Characterization and Modeling of PIDX Parallel I/O for Performance Optimization

被引:10
|
作者
Kumar, Sidharth [1 ]
Saha, Avishek [1 ]
Vishwanath, Venkatram [2 ]
Carns, Philip [2 ]
Schmidt, John A. [1 ]
Scorzelli, Giorgio [1 ]
Kolla, Hemanth [4 ]
Grout, Ray [6 ]
Latham, Robert [2 ]
Ross, Robert [2 ]
Papka, Michael E. [2 ,4 ,5 ]
Chen, Jacqueline [4 ]
Pascucci, Valerio [1 ,3 ]
机构
[1] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[2] Argonne Natl Lab, Argonne, IL USA
[3] Pacific Northwest Natl Lab, Richland, WA USA
[4] Sandia Natl Labs, Livermore, CA USA
[5] No Illinois Univ, De Kalb, IL 60115 USA
[6] Natl Renewable Energy Lab, Golden, CO USA
关键词
I/O & Network Characterization; Performance Modeling;
D O I
10.1145/2503210.2503252
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Parallel I/O library performance can vary greatly in response to user-tunable parameter values such as aggregator count, file count, and aggregation strategy. Unfortunately, manual selection of these values is time consuming and dependent on characteristics of the target machine, the underlying file system, and the dataset itself. Some characteristics, such as the amount of memory per core, can also impose hard constraints on the range of viable parameter values. In this work we address these problems by using machine learning techniques to model the performance of the PIDX parallel I/O library and select appropriate tunable parameter values. We characterize both the network and I/O phases of PIDX on a Cray XE6 as well as an IBM Blue Gene/P system. We use the results of this study to develop a machine learning model for parameter space exploration and performance prediction.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [1] Performance characterization and optimization of parallel I/O on the Cray XT
    Yu, Weikuan
    Vetter, Jeffrey S.
    Oral, H. Sarp
    2008 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-8, 2008, : 1468 - 1478
  • [2] PIDX: Efficient Parallel I/O for Multi-resolution Multi-dimensional Scientific Datasets
    Kumar, Sidharth
    Vishwanath, Venkatram
    Carns, Philip
    Summa, Brian
    Scorzelli, Giorgio
    Pascucci, Valerio
    Ross, Robert
    Chen, Jacqueline
    Kolla, Hemanth
    Grout, Ray
    2011 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2011, : 103 - 111
  • [3] Dynamic Data Layout Optimization for High Performance Parallel I/O
    Rush, Everett Neil
    Harris, Bryan
    Altiparmak, Nihat
    Tosan, Ali Saman
    PROCEEDINGS OF 2016 IEEE 23RD INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING (HIPC), 2016, : 132 - 141
  • [4] Automatic parallel I/O performance optimization using genetic algorithms
    Chen, Y
    Winslett, M
    Cho, Y
    Kuo, S
    SEVENTH INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE DISTRIBUTED COMPUTING - PROCEEDINGS, 1998, : 155 - 162
  • [5] Efficient Data Restructuring and Aggregation for I/O Acceleration in PIDX
    Kumar, Sidharth
    Vishwanath, Venkatram
    Carns, Philip
    Levine, Joshua A.
    Latham, Robert
    Scorzelli, Giorgio
    Kolla, Hemanth
    Grout, Ray
    Ross, Robert
    Papka, Michael E.
    Chen, Jacqueline
    Pascucci, Valerio
    2012 INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SC), 2012,
  • [6] Parallel I/O Aware Query Optimization
    Ghodsnia, Pedram
    Bowman, Ivan T.
    Nica, Anisoara
    SIGMOD'14: PROCEEDINGS OF THE 2014 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2014, : 349 - 360
  • [7] Measurement-based modeling and analysis methodology for characterizing parallel I/O performance
    Sharma, S
    Iyer, RK
    FIFTH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, PROCEEDINGS, 1998, : 391 - 398
  • [8] I/O optimization in the checkpointing of OpenMP parallel applications
    Losada, Nuria
    Martin, Maria J.
    Rodriguez, Gabriel
    Gonzalez, Patricia
    23RD EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING (PDP 2015), 2015, : 222 - 229
  • [9] Optimization of checkpointing-related I/O for high-performance parallel and distributed computing
    Subramaniyan, Rajagopal
    Grobelny, Eric
    Studham, Scott
    George, Alan D.
    JOURNAL OF SUPERCOMPUTING, 2008, 46 (02): : 150 - 180
  • [10] Optimization of checkpointing-related I/O for high-performance parallel and distributed computing
    Rajagopal Subramaniyan
    Eric Grobelny
    Scott Studham
    Alan D. George
    The Journal of Supercomputing, 2008, 46 : 150 - 180