Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction

被引:79
|
作者
Nam, David [1 ]
Chapiro, Julius [1 ]
Paradis, Valerie [2 ,3 ]
Seraphin, Tobias Paul [4 ,5 ]
Kather, Jakob Nikolas [5 ,6 ,7 ,8 ]
机构
[1] Yale Sch Med, Dept Radiol & Biomed Imaging, Sect Intervent Radiol, New Haven, CT USA
[2] Univ Paris, Ctr Rech inflammat, CRI, INSERM U1149, Paris, France
[3] Univ Paris, Hop Beaujon, AP HP, Dept Pathol, Clichy, France
[4] Heinrich Heine Univ Dusseldorf, Univ Hosp Dusseldorf, Med Fac, Dept Gastroenterol Hepatol & Infect Dis, Dusseldorf, Germany
[5] Univ Hosp RWTH Aachen, Dept Med 3, Aachen, Germany
[6] Univ Leeds, Leeds Inst Med Res St Jamess, Pathol & Data Analyt, Leeds, England
[7] Univ Hosp Heidelberg, Natl Ctr Tumor Dis NCT, Med Oncol, Heidelberg, Germany
[8] RWTH Univ Hosp, Dept Med 3, D-52074 Aachen, Germany
基金
美国国家卫生研究院;
关键词
Artificial intelli-gence; deep learning; machine learning; diagnostic support system; imaging; multimodal data integration; CONVOLUTIONAL NEURAL-NETWORK; HEPATOCELLULAR-CARCINOMA; RADIOMICS; MACHINE; CLASSIFICATION; QUANTIFICATION; VARIABILITY; MODEL; RISK; BIAS;
D O I
10.1016/j.jhepr.2022.100443
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Clinical routine in hepatology involves the diagnosis and treatment of a wide spectrum of meta-bolic, infectious, autoimmune and neoplastic diseases. Clinicians integrate qualitative and quanti-tative information from multiple data sources to make a diagnosis, prognosticate the disease course, and recommend a treatment. In the last 5 years, advances in artificial intelligence (AI), particularly in deep learning, have made it possible to extract clinically relevant information from complex and diverse clinical datasets. In particular, histopathology and radiology image data contain diagnostic, prognostic and predictive information which AI can extract. Ultimately, such AI systems could be implemented in clinical routine as decision support tools. However, in the context of hepatology, this requires further large-scale clinical validation and regulatory approval. Herein, we summarise the state of the art in AI in hepatology with a particular focus on histopathology and radiology data. We present a roadmap for the further development of novel biomarkers in hep-atology and outline critical obstacles which need to be overcome.(c) 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article under the CC BY license (http://creativecommons.org/licenses/ by/4.0/).
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Artificial intelligence approaches for molecular representation in drug response prediction
    Lin, Cui-Xiang
    Guan, Yuanfang
    Li, Hong-Dong
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2024, 84
  • [42] Optimization and Prediction of Spectral Response of Metasurfaces Using Artificial Intelligence
    Sarma, Raktim
    Goldflam, Michael
    Donahue, Emily
    Pribisova, Abigail
    Gennaro, Sylvain
    Wright, Jeremy
    Brener, Igal
    Briscoe, Jayson
    [J]. CRYSTALS, 2020, 10 (12): : 1 - 9
  • [43] Improving artificial intelligence with games
    Wurman, Peter R.
    Stone, Peter
    Spranger, Michael
    [J]. SCIENCE, 2023, 381 (6654) : 147 - 148
  • [44] Improving Sustainability with Artificial Intelligence
    Koch, David
    Schuseil, Frauke
    Lentes, Joachim
    Waltersmann, Lara
    [J]. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2023, 118 (05): : 307 - 311
  • [45] Improving Tools in Artificial Intelligence
    Garrido, Angel
    [J]. BRAIN-BROAD RESEARCH IN ARTIFICIAL INTELLIGENCE AND NEUROSCIENCE, 2010, 1 (01): : 43 - 48
  • [46] The divergent roles of exosomes in kidney diseases: Pathogenesis, diagnostics, prognostics and therapeutics
    Thongboonkerd, Visith
    Kanlaya, Rattiyaporn
    [J]. INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2022, 149
  • [47] Artificial Intelligence in Respiratory Diseases
    Lopez-Gonzalez, Rafael
    Sanchez-Garcia, Jose
    Garcia-Castro, Fabio
    [J]. ARCHIVOS DE BRONCONEUMOLOGIA, 2021, 57 (02): : 77 - 78
  • [48] Artificial intelligence in glomerular diseases
    Francesco P. Schena
    Riccardo Magistroni
    Fedelucio Narducci
    Daniela I. Abbrescia
    Vito W. Anelli
    Tommaso Di Noia
    [J]. Pediatric Nephrology, 2022, 37 : 2533 - 2545
  • [49] Artificial intelligence in glomerular diseases
    Schena, Francesco P.
    Magistroni, Riccardo
    Narducci, Fedelucio
    Abbrescia, Daniela, I
    Anelli, Vito W.
    Di Noia, Tommaso
    [J]. PEDIATRIC NEPHROLOGY, 2022, 37 (11) : 2533 - 2545
  • [50] Artificial intelligence and corneal diseases
    Kang, Linda
    Ballouz, Dena
    Woodward, Maria A.
    [J]. CURRENT OPINION IN OPHTHALMOLOGY, 2022, 33 (05) : 407 - 417