Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction

被引:81
|
作者
Nam, David [1 ]
Chapiro, Julius [1 ]
Paradis, Valerie [2 ,3 ]
Seraphin, Tobias Paul [4 ,5 ]
Kather, Jakob Nikolas [5 ,6 ,7 ,8 ]
机构
[1] Yale Sch Med, Dept Radiol & Biomed Imaging, Sect Intervent Radiol, New Haven, CT USA
[2] Univ Paris, Ctr Rech inflammat, CRI, INSERM U1149, Paris, France
[3] Univ Paris, Hop Beaujon, AP HP, Dept Pathol, Clichy, France
[4] Heinrich Heine Univ Dusseldorf, Univ Hosp Dusseldorf, Med Fac, Dept Gastroenterol Hepatol & Infect Dis, Dusseldorf, Germany
[5] Univ Hosp RWTH Aachen, Dept Med 3, Aachen, Germany
[6] Univ Leeds, Leeds Inst Med Res St Jamess, Pathol & Data Analyt, Leeds, England
[7] Univ Hosp Heidelberg, Natl Ctr Tumor Dis NCT, Med Oncol, Heidelberg, Germany
[8] RWTH Univ Hosp, Dept Med 3, D-52074 Aachen, Germany
基金
美国国家卫生研究院;
关键词
Artificial intelli-gence; deep learning; machine learning; diagnostic support system; imaging; multimodal data integration; CONVOLUTIONAL NEURAL-NETWORK; HEPATOCELLULAR-CARCINOMA; RADIOMICS; MACHINE; CLASSIFICATION; QUANTIFICATION; VARIABILITY; MODEL; RISK; BIAS;
D O I
10.1016/j.jhepr.2022.100443
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Clinical routine in hepatology involves the diagnosis and treatment of a wide spectrum of meta-bolic, infectious, autoimmune and neoplastic diseases. Clinicians integrate qualitative and quanti-tative information from multiple data sources to make a diagnosis, prognosticate the disease course, and recommend a treatment. In the last 5 years, advances in artificial intelligence (AI), particularly in deep learning, have made it possible to extract clinically relevant information from complex and diverse clinical datasets. In particular, histopathology and radiology image data contain diagnostic, prognostic and predictive information which AI can extract. Ultimately, such AI systems could be implemented in clinical routine as decision support tools. However, in the context of hepatology, this requires further large-scale clinical validation and regulatory approval. Herein, we summarise the state of the art in AI in hepatology with a particular focus on histopathology and radiology data. We present a roadmap for the further development of novel biomarkers in hep-atology and outline critical obstacles which need to be overcome.(c) 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article under the CC BY license (http://creativecommons.org/licenses/ by/4.0/).
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A Comprehensive Analysis of Artificial Intelligence Techniques for the Prediction and Prognosis of Lifestyle Diseases
    Modi, Krishna
    Singh, Ishbir
    Kumar, Yogesh
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (08) : 4733 - 4756
  • [32] Artificial intelligence in clinical and genomic diagnostics
    Dias, Raquel
    Torkamani, Ali
    [J]. GENOME MEDICINE, 2019, 11 (01)
  • [33] Advancing cancer diagnostics with artificial intelligence
    Hipp, Jason D.
    Stumpe, Martin
    [J]. CANCER RESEARCH, 2018, 78 (13)
  • [34] Artificial intelligence in modern breast diagnostics
    Banys-Paluchowski, Maggie
    Molinos, Laura Dussan
    Ruebsamen, Marcus
    Toellner, Thilo
    Rody, Achim
    Fehm, Tanja
    Buendgen, Nana
    Krawczyk, Natalia
    [J]. GYNAKOLOGIE, 2022, 55 (10): : 771 - 782
  • [35] Using Artificial Intelligence in Diagnostics of Meningitis
    Seho, L.
    Sutkovic, H.
    Tabak, V.
    Tahirovic, S.
    Smajovic, A.
    Becic, E.
    Deumic, A.
    Becirovic, L. Spahic
    Pokvic, L. Gurbeta
    Badnjevic, A.
    [J]. IFAC PAPERSONLINE, 2022, 55 (04): : 56 - 61
  • [36] Artificial intelligence in prenatal cardiac diagnostics
    Weichert, Jan
    Welp, Amrei
    Scharf, Jann Lennard
    Dracopoulos, Christoph
    Rody, Achim
    Gembicki, Michael
    [J]. GYNAKOLOGE, 2022, 55 (01): : 22 - 31
  • [37] Artificial intelligence in clinical and genomic diagnostics
    Raquel Dias
    Ali Torkamani
    [J]. Genome Medicine, 11
  • [38] Advances in artificial intelligence based diagnosis and treatment of liver diseases - Correspondence
    Chakraborty, Sandip
    Chandran, Deepak
    Chopra, Hitesh
    Akash, Shopnil
    Dhama, Kuldeep
    [J]. INTERNATIONAL JOURNAL OF SURGERY, 2023, 109 (10) : 3234 - 3235
  • [39] Improving diagnostics of Pulmonary Embolism with Clinical Prediction Models in a Clinic of Pulmonary Diseases
    Marin, Aleksander
    Pozek, Igor
    Erzen, Renato
    Brguljan, Pika Mesko
    Kosnik, Mitja
    [J]. ZDRAVNISKI VESTNIK-SLOVENIAN MEDICAL JOURNAL, 2010, 79 (10): : 698 - 706
  • [40] Prognostics and advanced diagnostics for improving steady-state and pulse reliability
    Macheret, Yevgeny
    Koehn, Phillip
    [J]. 2006 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2006, : 4185 - +