Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction

被引:81
|
作者
Nam, David [1 ]
Chapiro, Julius [1 ]
Paradis, Valerie [2 ,3 ]
Seraphin, Tobias Paul [4 ,5 ]
Kather, Jakob Nikolas [5 ,6 ,7 ,8 ]
机构
[1] Yale Sch Med, Dept Radiol & Biomed Imaging, Sect Intervent Radiol, New Haven, CT USA
[2] Univ Paris, Ctr Rech inflammat, CRI, INSERM U1149, Paris, France
[3] Univ Paris, Hop Beaujon, AP HP, Dept Pathol, Clichy, France
[4] Heinrich Heine Univ Dusseldorf, Univ Hosp Dusseldorf, Med Fac, Dept Gastroenterol Hepatol & Infect Dis, Dusseldorf, Germany
[5] Univ Hosp RWTH Aachen, Dept Med 3, Aachen, Germany
[6] Univ Leeds, Leeds Inst Med Res St Jamess, Pathol & Data Analyt, Leeds, England
[7] Univ Hosp Heidelberg, Natl Ctr Tumor Dis NCT, Med Oncol, Heidelberg, Germany
[8] RWTH Univ Hosp, Dept Med 3, D-52074 Aachen, Germany
基金
美国国家卫生研究院;
关键词
Artificial intelli-gence; deep learning; machine learning; diagnostic support system; imaging; multimodal data integration; CONVOLUTIONAL NEURAL-NETWORK; HEPATOCELLULAR-CARCINOMA; RADIOMICS; MACHINE; CLASSIFICATION; QUANTIFICATION; VARIABILITY; MODEL; RISK; BIAS;
D O I
10.1016/j.jhepr.2022.100443
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Clinical routine in hepatology involves the diagnosis and treatment of a wide spectrum of meta-bolic, infectious, autoimmune and neoplastic diseases. Clinicians integrate qualitative and quanti-tative information from multiple data sources to make a diagnosis, prognosticate the disease course, and recommend a treatment. In the last 5 years, advances in artificial intelligence (AI), particularly in deep learning, have made it possible to extract clinically relevant information from complex and diverse clinical datasets. In particular, histopathology and radiology image data contain diagnostic, prognostic and predictive information which AI can extract. Ultimately, such AI systems could be implemented in clinical routine as decision support tools. However, in the context of hepatology, this requires further large-scale clinical validation and regulatory approval. Herein, we summarise the state of the art in AI in hepatology with a particular focus on histopathology and radiology data. We present a roadmap for the further development of novel biomarkers in hep-atology and outline critical obstacles which need to be overcome.(c) 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article under the CC BY license (http://creativecommons.org/licenses/ by/4.0/).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Use of Artificial Intelligence methods for advanced bearing health diagnostics and prognostics
    Chen, S. L.
    Craig, Mark
    Callan, Rob
    Powrie, Honor
    Wood, Robert
    [J]. 2008 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2008, : 3630 - +
  • [2] Liver Diagnostics with transparent artificial Intelligence
    Dos Santos, Daniel Pinto
    [J]. ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2020, 192 (02): : 125 - +
  • [3] Artificial intelligence for liver diseases: The urgency of collaboration
    Cesaretti, Manuela
    Izzo, Alessandro
    Mavrothalassitis, Orestes
    Pellegrino, Roberta Anna
    [J]. DIGESTIVE AND LIVER DISEASE, 2024, 56 (06) : 1110 - 1111
  • [4] Diagnosis of liver diseases based on artificial intelligence
    Zhang, Zhe
    [J]. BIOTECHNOLOGY AND GENETIC ENGINEERING REVIEWS, 2024, 40 (02) : 1193 - 1201
  • [5] Artificial Intelligence in Liver Diseases: Recent Advances
    Lu, Feifei
    Meng, Yao
    Song, Xiaoting
    Li, Xiaotong
    Liu, Zhuang
    Gu, Chunru
    Zheng, Xiaojie
    Jing, Yi
    Cai, Wei
    Pinyopornpanish, Kanokwan
    Mancuso, Andrea
    Romeiro, Fernando Gomes
    Mendez-Sanchez, Nahum
    Qi, Xingshun
    [J]. ADVANCES IN THERAPY, 2024, 41 (03) : 967 - 990
  • [6] Artificial Intelligence in Liver Diseases: Recent Advances
    Feifei Lu
    Yao Meng
    Xiaoting Song
    Xiaotong Li
    Zhuang Liu
    Chunru Gu
    Xiaojie Zheng
    Yi Jing
    Wei Cai
    Kanokwan Pinyopornpanish
    Andrea Mancuso
    Fernando Gomes Romeiro
    Nahum Méndez-Sánchez
    Xingshun Qi
    [J]. Advances in Therapy, 2024, 41 : 967 - 990
  • [7] An Augmented Artificial Intelligence Approach for Chronic Diseases Prediction
    Rashid, Junaid
    Batool, Saba
    Kim, Jungeun
    Nisar, Muhammad Wasif
    Hussain, Amir
    Juneja, Sapna
    Kushwaha, Riti
    [J]. FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [8] Artificial intelligence in real-time diagnostics and prognostics of composite materials and its uncertainties-a review
    Elenchezhian, Muthu Ram Prabhu
    Vadlamudi, Vamsee
    Raihan, Rassel
    Reifsnider, Kenneth
    Reifsnider, Eric
    [J]. SMART MATERIALS AND STRUCTURES, 2021, 30 (08)
  • [9] Artificial intelligence for prediction of response to cancer immunotherapy
    Yang, Yuhan
    Zhao, Yunuo
    Liu, Xici
    Huang, Juan
    [J]. SEMINARS IN CANCER BIOLOGY, 2022, 87 : 137 - 147
  • [10] Response Prediction in Lung SBRT with Artificial Intelligence
    Etiz, Durmus
    Yakar, Melek
    Ak, Guntulu
    Kutri, Deniz
    Celik, Ozer
    Metintas, Muzaffer
    [J]. TURK ONKOLOJI DERGISI-TURKISH JOURNAL OF ONCOLOGY, 2023, : 288 - 294