A Multiparametric MRI-Based Radiomics Analysis to Efficiently Classify Tumor Subregions of Glioblastoma: A Pilot Study in Machine Learning

被引:18
|
作者
Chiu, Fang-Ying [1 ]
Le, Nguyen Quoc Khanh [2 ,3 ,4 ]
Chen, Cheng-Yu [2 ,3 ,4 ,5 ,6 ]
机构
[1] Tzu Chi Univ, Res Ctr Sustainable Dev Goals SDGs, Hualien 970374, Taiwan
[2] Taipei Med Univ, Coll Med, Profess Master Program Artificial Intelligence Me, Taipei 106339, Taiwan
[3] Taipei Med Univ, Res Ctr Artificial Intelligence Med, Taipei 106339, Taiwan
[4] Taipei Med Univ Hosp, Translat Imaging Res Ctr, Taipei 110301, Taiwan
[5] Taipei Med Univ, Sch Med, Dept Radiol, Coll Med, Taipei 110301, Taiwan
[6] Taipei Med Univ Hosp, Dept Med Imaging, Taipei 110301, Taiwan
关键词
glioblastoma; MRI; quantitative imaging; oncologic imaging; radiomics; texture analysis; ground truth; machine learning; precision medicine; SURVIVAL; CLASSIFICATION; SYSTEM;
D O I
10.3390/jcm10092030
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Glioblastoma multiforme (GBM) carries a poor prognosis and usually presents with heterogenous regions of a necrotic core, solid part, peritumoral tissue, and peritumoral edema. Accurate demarcation on magnetic resonance imaging (MRI) between the active tumor region and perifocal edematous extension is essential for planning stereotactic biopsy, GBM resection, and radiotherapy. We established a set of radiomics features to efficiently classify patients with GBM and retrieved cerebral multiparametric MRI, including contrast-enhanced T1-weighted (T1-CE), T2-weighted, T2-weighted fluid-attenuated inversion recovery, and apparent diffusion coefficient images from local patients with GBM. A total of 1316 features on the raw MR images were selected for each annotated area. A leave-one-out cross-validation was performed on the whole dataset, the different machine learning and deep learning techniques tested; random forest achieved the best performance (average accuracy: 93.6% necrosis, 90.4% solid part, 95.8% peritumoral tissue, and 90.4% peritumoral edema). The features from the enhancing tumor and the tumor shape elongation of peritumoral edema region for high-risk groups from T1-CE. The multiparametric MRI-based radiomics model showed the efficient classification of tumor subregions of GBM and suggests that prognostic radiomic features from a routine MRI exam may also be significantly associated with key biological processes that affect the response to chemotherapy in GBM.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods
    Wang, Xinhui
    Wan, Qi
    Chen, Houjin
    Li, Yanfeng
    Li, Xinchun
    EUROPEAN RADIOLOGY, 2020, 30 (08) : 4595 - 4605
  • [32] Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods
    Xinhui Wang
    Qi Wan
    Houjin Chen
    Yanfeng Li
    Xinchun Li
    European Radiology, 2020, 30 : 4595 - 4605
  • [33] Machine learning-based multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma
    Wang, Hao
    Song, Bin
    Ye, Ningrong
    Ren, Jiliang
    Sun, Xilin
    Dai, Zedong
    Zhang, Yuan
    Chen, Bihong T.
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 122
  • [34] MRI-based radiomics to predict lipomatous soft tissue tumors malignancy: a pilot study
    Leporq, Benjamin
    Bouhamama, Amine
    Pilleul, Frank
    Lame, Fabrice
    Bihane, Catherine
    Sdika, Michael
    Blay, Jean-Yves
    Beuf, Olivier
    CANCER IMAGING, 2020, 20 (01)
  • [35] MRI-based radiomics to predict lipomatous soft tissue tumors malignancy: a pilot study
    Benjamin Leporq
    Amine Bouhamama
    Frank Pilleul
    Fabrice Lame
    Catherine Bihane
    Michael Sdika
    Jean-Yves Blay
    Olivier Beuf
    Cancer Imaging, 20
  • [36] Prediction of Tumor Shrinkage Pattern to Neoadjuvant Chemotherapy Using a Multiparametric MRI-Based Machine Learning Model in Patients With Breast Cancer
    Huang, Yuhong
    Chen, Wenben
    Zhang, Xiaoling
    He, Shaofu
    Shao, Nan
    Shi, Huijuan
    Lin, Zhenzhe
    Wu, Xueting
    Li, Tongkeng
    Lin, Haotian
    Lin, Ying
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [37] Multiparametric MRI-based fusion radiomics for predicting telomerase reverse transcriptase (TERT) promoter mutations and progression-free survival in glioblastoma: a multicentre study
    Zhang, Hongbo
    Zhang, Hanwen
    Zhang, Yuze
    Zhou, Beibei
    Wu, Lei
    Yang, Wanqun
    Lei, Yi
    Huang, Biao
    NEURORADIOLOGY, 2024, 66 (01) : 81 - 92
  • [38] Prediction of high infiltration levels in pituitary adenoma using MRI-based radiomics and machine learning
    Zhang Chao
    Heng Xueyuan
    Neng Wenpeng
    Chen Haixin
    Sun Aigang
    Li Jinxing
    Wang Mingguang
    中华神经外科杂志(英文), 2022, (04)
  • [39] Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning
    Lorenzo Ugga
    Renato Cuocolo
    Domenico Solari
    Elia Guadagno
    Alessandra D’Amico
    Teresa Somma
    Paolo Cappabianca
    Maria Laura del Basso de Caro
    Luigi Maria Cavallo
    Arturo Brunetti
    Neuroradiology, 2019, 61 : 1365 - 1373
  • [40] Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning
    Ugga, Lorenzo
    Cuocolo, Renato
    Solari, Domenico
    Guadagno, Elia
    D'Amico, Alessandra
    Somma, Teresa
    Cappabianca, Paolo
    de Caro, Maria Laura del Basso
    Cavallo, Luigi Maria
    Brunetti, Arturo
    NEURORADIOLOGY, 2019, 61 (12) : 1365 - 1373