Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods

被引:0
|
作者
Xinhui Wang
Qi Wan
Houjin Chen
Yanfeng Li
Xinchun Li
机构
[1] Beijing Jiaotong University,School of Electronic and Information Engineering
[2] The First Affiliated Hospital of Guangzhou Medical University,Department of Radiology
来源
European Radiology | 2020年 / 30卷
关键词
Magnetic resonance imaging; Lung cancer; Radiomics; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:4595 / 4605
页数:10
相关论文
共 50 条
  • [1] Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods
    Wang, Xinhui
    Wan, Qi
    Chen, Houjin
    Li, Yanfeng
    Li, Xinchun
    EUROPEAN RADIOLOGY, 2020, 30 (08) : 4595 - 4605
  • [2] Breast Lesion Classification with Multiparametric Breast MRI Using Radiomics and Machine Learning: A Comparison with Radiologists' Performance
    Naranjo, Isaac Daimiel
    Gibbs, Peter
    Reiner, Jeffrey S.
    Lo Gullo, Roberto
    Thakur, Sunitha B.
    Jochelson, Maxine S.
    Thakur, Nikita
    Baltzer, Pascal A. T.
    Helbich, Thomas H.
    Pinker, Katja
    CANCERS, 2022, 14 (07)
  • [3] Pulmonary MRI Radiomics and Machine Learning: Effect of Intralesional Heterogeneity on Classification of Lesion
    Wang, Xinhui
    Li, Xinchun
    Chen, Houjin
    Peng, Yahui
    Li, Yanfeng
    ACADEMIC RADIOLOGY, 2022, 29 : S73 - S81
  • [4] Machine-learning-based classification of Glioblastoma in multiparametric MRI
    Cui, Ge
    Jeong, Jiwoong Jason
    Lei, Yang
    Wang, Tonghe
    Liu, Tian
    Curran, Walter J.
    Mao, Hui
    Yang, Xiaofeng
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [5] Machine learning for multi-parametric breast MRI: radiomics-based approaches for lesion classification
    Altabella, Luisa
    Benetti, Giulio
    Camera, Lucia
    Cardano, Giuseppe
    Montemezzi, Stefania
    Cavedon, Carlo
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (15):
  • [6] Discriminating minimal residual disease status in multiple myeloma based on MRI: utility of radiomics and comparison of machine-learning methods
    Xiong, X.
    Zhu, Q.
    Zhou, Z.
    Qian, X.
    Hong, R.
    Dai, Y.
    Hu, C.
    CLINICAL RADIOLOGY, 2023, 78 (11) : E839 - E846
  • [7] MRI radiomics-based machine -learning classification of bone chondrosarcoma
    Gitto, Salvatore
    Cuocolo, Renato
    Albano, Domenico
    Chianca, Vito
    Messina, Carmelo
    Gambino, Angelo
    Ugga, Lorenzo
    Cortese, Maria Cristina
    Lazzara, Angelo
    Ricci, Domenico
    Spairani, Riccardo
    Zanchetta, Edoardo
    Luzzati, Alessandro
    Brunetti, Arturo
    Parafioriti, Antonina
    Sconfienza, Luca Maria
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 128
  • [8] Radiogenomics and Radiomics of Skull Base Chordoma: Machine Learning-based Classification of Genetic Signatures and Clinical Outcomes by Multiparametric MRI
    Gersey, Zachary C.
    Abdallah, Hussein
    Ak, Murat
    Colen, Rivka
    Gardner, Paul
    Mamindla, Priyadarshini
    Muthiah, Nallammaih
    Snyderman, Carl
    Wang, Eric
    Zenkin, Serafettin
    Zenonos, Georgios
    JOURNAL OF NEUROSURGERY, 2022, 136 (05)
  • [9] Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI
    Hu, Jianping
    Zhao, Yijing
    Li, Mengcheng
    Liu, Jianyi
    Wang, Feng
    Weng, Qiang
    Wang, Xingfu
    Cao, Dairong
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 131
  • [10] Machine learning-based multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma
    Wang, Hao
    Song, Bin
    Ye, Ningrong
    Ren, Jiliang
    Sun, Xilin
    Dai, Zedong
    Zhang, Yuan
    Chen, Bihong T.
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 122