Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods

被引:0
|
作者
Xinhui Wang
Qi Wan
Houjin Chen
Yanfeng Li
Xinchun Li
机构
[1] Beijing Jiaotong University,School of Electronic and Information Engineering
[2] The First Affiliated Hospital of Guangzhou Medical University,Department of Radiology
来源
European Radiology | 2020年 / 30卷
关键词
Magnetic resonance imaging; Lung cancer; Radiomics; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:4595 / 4605
页数:10
相关论文
共 50 条
  • [41] Machine learning-based radiomics for histological classification of parotid tumors using morphological MRI: a comparative study
    He, Zhiying
    Mao, Yitao
    Lu, Shanhong
    Tan, Lei
    Xiao, Juxiong
    Tan, Pingqing
    Zhang, Hailin
    Li, Guo
    Yan, Helei
    Tan, Jiaqi
    Huang, Donghai
    Qiu, Yuanzheng
    Zhang, Xin
    Wang, Xingwei
    Liu, Yong
    EUROPEAN RADIOLOGY, 2022, 32 (12) : 8099 - 8110
  • [42] Structural MRI-Based Radiomics and Machine Learning for the Classification of Attention-Deficit/Hyperactivity Disorder Subtypes
    Lin, C.
    Qiu, J.
    Hou, K.
    Lu, W.
    Lu, W.
    Liu, X.
    Qiu, J.
    Shi, L.
    MEDICAL PHYSICS, 2020, 47 (06) : E554 - E554
  • [43] Deep learning and radiomics to predict the mitotic index of gastrointestinal stromal tumors based on multiparametric MRI
    Yang, Linsha
    Du, Dan
    Zheng, Tao
    Liu, Lanxiang
    Wang, Zhanqiu
    Du, Juan
    Yi, Huiling
    Cui, Yujie
    Liu, Defeng
    Fang, Yuan
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [44] Radiomics and Machine Learning With Multiparametric Preoperative MRI May Accurately Predict the Histopathological Grades of Soft Tissue Sarcomas
    Wang, Hexiang
    Chen, Haisong
    Duan, Shaofeng
    Hao, Dapeng
    Liu, Jihua
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (03) : 791 - 797
  • [45] Multiparametric MRI-Based Interpretable Radiomics Machine Learning Model Differentiates Medulloblastoma and Ependymoma in Children: A Two-Center Study
    Yimit, Yasen
    Yasin, Parhat
    Tuersun, Abudouresuli
    Wang, Jingru
    Wang, Xiaohong
    Huang, Chencui
    Abudoubari, Saimaitikari
    Chen, Xingzhi
    Ibrahim, Irshat
    Nijiati, Pahatijiang
    Wang, Yunling
    Zou, Xiaoguang
    Nijiati, Mayidili
    ACADEMIC RADIOLOGY, 2024, 31 (08) : 3384 - 3396
  • [46] UTILIZING MACHINE LEARNING METHODS FOR SEGMENTATION AND CLASSIFICATION OF BRAIN TUMORS BASED ON CONVENTIONAL MRI
    Artzi, Moran
    Bressler, Idan
    Ben Bashat, Dafna
    NEURO-ONCOLOGY, 2018, 20 : 68 - 69
  • [47] Comparison of Machine Learning Methods in Classification of Affective Disorders
    Kinder, I
    Friganovic, K.
    Vukojevic, J.
    Mulc, D.
    Slukan, T.
    Vidovic, D.
    Brecic, P.
    Cifrek, M.
    2020 43RD INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND ELECTRONIC TECHNOLOGY (MIPRO 2020), 2020, : 177 - 181
  • [48] Machine Learning Based on a Multiparametric and Multiregional Radiomics Signature Predicts Radiotherapeutic Response in Patients with Glioblastoma
    Pan, Zi-Qi
    Zhang, Shu-Jun
    Wang, Xiang-Lian
    Jiao, Yu-Xin
    Qiu, Jian-Jian
    BEHAVIOURAL NEUROLOGY, 2020, 2020
  • [49] Comparison of Machine and Deep Learning models for automatic segmentation of prostate cancers on multiparametric MRI
    Maimone, Giovanni
    Nicoletti, Giulia
    Mazzetti, Simone
    Regge, Daniele
    Giannini, Valentina
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA 2022), 2022,
  • [50] Machine Learning and Deep Learning Methods for Skin Lesion Classification and Diagnosis: A Systematic Review
    Kassem, Mohamed A.
    Hosny, Khalid M.
    Damasevicius, Robertas
    Eltoukhy, Mohamed Meselhy
    DIAGNOSTICS, 2021, 11 (08)