The reconstructibility of finite abelian groups

被引:5
|
作者
Pebody, L [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
来源
COMBINATORICS PROBABILITY & COMPUTING | 2004年 / 13卷 / 06期
关键词
D O I
10.1017/S0963548303005807
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a subset S of an abelian group G and an integer k greater than or equal to 1, the k-deck of S is the function that assigns to every T subset of or equal to G with at most k elements the number of elements g is an element of G with g + T subset of or equal to S. The reconstruction problem for an abelian group G asks for the minimal value of k such that every subset S of G is determined, up to translation, by its k-deck. This minimal value is the set-reconstruction number r(set)(G) of G; the corresponding value for multisets is the reconstruction number r(G). Previous work had given bounds for the set-reconstruction number of cyclic groups: Alon, Caro, Krasikov and Roditty [1] showed that r(set)(Z(n)) < log(2)n and Radcliffe and Scott [15] that r(set)(Z(n)) < 9(lnn)/(lnlnn). We give a precise evaluation of r(G) for all abelian groups G and deduce that r(set)(Z(n)) less than or equal to 6.
引用
收藏
页码:867 / 892
页数:26
相关论文
共 50 条
  • [21] Complete factorizations of finite abelian groups
    Chin, A. Y. M.
    Wang, K. L.
    Wong, K. B.
    JOURNAL OF ALGEBRA, 2023, 628 : 509 - 523
  • [22] Formal duality in finite abelian groups
    Li, Shuxing
    Pott, Alexander
    Schueler, Robert
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 162 : 354 - 405
  • [23] On the Heyde Theorem for Finite Abelian Groups
    G. M. Feldman
    Journal of Theoretical Probability, 2004, 17 : 929 - 941
  • [24] Difference bases in finite Abelian groups
    Taras Banakh
    Volodymyr Gavrylkiv
    Acta Scientiarum Mathematicarum, 2019, 85 : 119 - 137
  • [25] On hyper (abelian of finite rank) groups
    Wehrfritz, B. A. F.
    ALGEBRA COLLOQUIUM, 2008, 15 (03) : 361 - 370
  • [26] ON A PARTITION PROBLEM OF FINITE ABELIAN GROUPS
    Qu, Zhenhua
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 92 (01) : 24 - 31
  • [27] Finite Abelian Groups via Congruences
    Wooley, Trevor D.
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (05): : 482 - 484
  • [28] Power graph of finite abelian groups
    Chelvam, T. Tamizh
    Sattanathan, M.
    ALGEBRA & DISCRETE MATHEMATICS, 2013, 16 (01): : 33 - 41
  • [29] Isolated Subgroups of Finite Abelian Groups
    Tarnauceanu, Marius
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (02) : 615 - 620
  • [30] On the Heyde theorem for finite Abelian groups
    Feldman, GM
    JOURNAL OF THEORETICAL PROBABILITY, 2004, 17 (04) : 929 - 941