The reconstructibility of finite abelian groups

被引:4
|
作者
Pebody, L [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
来源
COMBINATORICS PROBABILITY & COMPUTING | 2004年 / 13卷 / 06期
关键词
D O I
10.1017/S0963548303005807
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a subset S of an abelian group G and an integer k greater than or equal to 1, the k-deck of S is the function that assigns to every T subset of or equal to G with at most k elements the number of elements g is an element of G with g + T subset of or equal to S. The reconstruction problem for an abelian group G asks for the minimal value of k such that every subset S of G is determined, up to translation, by its k-deck. This minimal value is the set-reconstruction number r(set)(G) of G; the corresponding value for multisets is the reconstruction number r(G). Previous work had given bounds for the set-reconstruction number of cyclic groups: Alon, Caro, Krasikov and Roditty [1] showed that r(set)(Z(n)) < log(2)n and Radcliffe and Scott [15] that r(set)(Z(n)) < 9(lnn)/(lnlnn). We give a precise evaluation of r(G) for all abelian groups G and deduce that r(set)(Z(n)) less than or equal to 6.
引用
收藏
页码:867 / 892
页数:26
相关论文
共 50 条
  • [1] ON FINITE ABELIAN GROUPS
    HOARE, AHM
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (01): : 40 - &
  • [2] The finite Abelian groups
    Chatelet, A
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1922, 175 : 85 - 87
  • [3] A NOTE ON FINITE ABELIAN GROUPS
    PAIGE, LJ
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (01) : 49 - 49
  • [4] Decomposing finite Abelian groups
    Cheung, Kevin K. H.
    Mosca, Michele
    [J]. Quantum Information and Computation, 2001, 1 (03): : 26 - 32
  • [5] ISOMORPHISM OF FINITE ABELIAN GROUPS
    MCHAFFEY, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (01): : 48 - &
  • [6] On Schurity of Finite Abelian Groups
    Evdokimov, Sergei
    Kovacs, Istvan
    Ponomarenko, Ilya
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (01) : 101 - 117
  • [7] DECOMPOSING FINITE ABELIAN GROUPS
    Cheung, Kevin K. H.
    Mosca, Michele
    [J]. QUANTUM INFORMATION & COMPUTATION, 2001, 1 (03) : 26 - 32
  • [8] Automorphisms of finite Abelian groups
    Hillar, Christopher J.
    Rhea, Darren L.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (10): : 917 - 923
  • [9] Factoring finite abelian groups
    Sands, AD
    [J]. JOURNAL OF ALGEBRA, 2004, 275 (02) : 540 - 549
  • [10] Lattices of Finite Abelian Groups
    Ladisch, Frieder
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 65 (03) : 938 - 951