On Schurity of Finite Abelian Groups

被引:16
|
作者
Evdokimov, Sergei [1 ]
Kovacs, Istvan [2 ,3 ]
Ponomarenko, Ilya [1 ]
机构
[1] VA Steklov Math Inst, St Petersburg Dept, St Petersburg 191011, Russia
[2] Univ Primorska, IAM, Koper 6000, Slovenia
[3] Univ Primorska, FAMNIT, Koper 6000, Slovenia
关键词
Permutation group; Schur group; Schur ring;
D O I
10.1080/00927872.2014.958848
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A finite group G is called a Schur group, if any Schur ring over G is associated in a natural way with a subgroup of Sym(G) that contains all right translations. Recently, the authors have completely identified the cyclic Schur groups. In this article, it is shown that any abelian Schur group belongs to one of several explicitly given families only. In particular, any noncyclic abelian Schur group of odd order is isomorphic to Z(3)xZ(3)(k) or Z(3)xZ(3)xZ(p) where k1 and p is a prime. In addition, we prove that Z(2)xZ(2)xZ(p) is a Schur group for every prime p.
引用
收藏
页码:101 / 117
页数:17
相关论文
共 50 条
  • [1] ON FINITE ABELIAN GROUPS
    HOARE, AHM
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (01): : 40 - &
  • [2] The finite Abelian groups
    Chatelet, A
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1922, 175 : 85 - 87
  • [3] A NOTE ON FINITE ABELIAN GROUPS
    PAIGE, LJ
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (01) : 49 - 49
  • [4] Decomposing finite Abelian groups
    Cheung, Kevin K. H.
    Mosca, Michele
    [J]. Quantum Information and Computation, 2001, 1 (03): : 26 - 32
  • [5] ISOMORPHISM OF FINITE ABELIAN GROUPS
    MCHAFFEY, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (01): : 48 - &
  • [6] The reconstructibility of finite abelian groups
    Pebody, L
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (06): : 867 - 892
  • [7] DECOMPOSING FINITE ABELIAN GROUPS
    Cheung, Kevin K. H.
    Mosca, Michele
    [J]. QUANTUM INFORMATION & COMPUTATION, 2001, 1 (03) : 26 - 32
  • [8] Automorphisms of finite Abelian groups
    Hillar, Christopher J.
    Rhea, Darren L.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (10): : 917 - 923
  • [9] Factoring finite abelian groups
    Sands, AD
    [J]. JOURNAL OF ALGEBRA, 2004, 275 (02) : 540 - 549
  • [10] Lattices of Finite Abelian Groups
    Ladisch, Frieder
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 65 (03) : 938 - 951