Moduli of products of curves

被引:9
|
作者
van Opstall, MA [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
关键词
D O I
10.1007/s00013-004-1045-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some technical results on the deformations of varieties of general type and on permanence of semi-log-canonical singularities are proved. These results are applied to show that the connected component of the moduli space of stable surfaces containing the moduli point of a product of stable curves is the product of the moduli spaces of the curves, assuming the curves have different genera. An application of this result shows that even after compactifying the moduli space and. xing numerical invariants, the moduli spaces are still very disconnected.
引用
收藏
页码:148 / 154
页数:7
相关论文
共 50 条
  • [21] FAMILIES OF CURVES AND VARIATION IN MODULI
    Del Padrone, Alessio
    Mistretta, Ernesto
    MATEMATICHE, 2006, 61 (01): : 163 - 177
  • [22] On the field of moduli of superelliptic curves
    Hidalgo, Ruben
    Shaska, Tony
    HIGHER GENUS CURVES IN MATHEMATICAL PHYSICS AND ARITHMETIC GEOMETRY, 2018, 703 : 47 - 62
  • [23] Singular Moduli of Shimura Curves
    Errthum, Eric
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (04): : 826 - 861
  • [24] PREFIXED CURVES IN MODULI SPACE
    Buff, Xavier
    Epstein, Adam L.
    Koch, Sarah
    AMERICAN JOURNAL OF MATHEMATICS, 2022, 144 (06) : 1485 - 1509
  • [25] PEANO CURVES AND MODULI OF CONTINUITY
    BUDAGOV, AA
    MATHEMATICAL NOTES, 1991, 50 (1-2) : 783 - 789
  • [26] Galois covers of moduli of curves
    Boggi, M
    Pikaart, M
    COMPOSITIO MATHEMATICA, 2000, 120 (02) : 171 - 191
  • [27] The moduli space of curves is rigid
    Hacking, Paul
    ALGEBRA & NUMBER THEORY, 2008, 2 (07) : 809 - 818
  • [28] A minicourse oil moduli of curves
    Looijenga, E
    MODULI SPACES IN ALGEBRAIC GEOMETRY, 2000, 1 : 267 - +
  • [29] ON THE PROJECTIVITY OF THE MODULI SPACES OF CURVES
    CORNALBA, MDT
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1993, 443 : 11 - 20
  • [30] WEIERSTRASS POINTS AND MODULI OF CURVES
    ARBARELLO, E
    COMPOSITIO MATHEMATICA, 1974, 29 (03) : 325 - 342