CO2 capture and storage;
air quality;
National Emission Ceiling;
criteria pollutants;
FUEL POWER-PLANTS;
CARBON CAPTURE;
STORAGE;
PERFORMANCE;
D O I:
10.1016/j.egypro.2009.02.179
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
The focus of this research is to develop a first assessment of the impacts of the implementation of CO2 capture technologies in the Dutch power sector on the transboundary air pollution (SO2, NOX, NH3, NMVOC, PM10 and PM2.5) levels in 2020. Results show that for the power sector SO2 emissions will be very low for scenarios that include large scale implementation of Carbon Capture and Storage (CCS). The annual emissions of NOx are estimated to be lower in all scenarios with greenhouse gas reductions. However, applying the post-combustion technology on existing power plants may result in higher NOx emissions per kWh. Both SO2 and NOx emissions from the power sector are a substantial part of the current national total. Large scale implementation of the post-combustion CO2 capture technology may result in more than 5 times higher NH3 emissions compared to scenarios without CCS and to other capture options (i.e. pre-combustion and oxyfuel combustion). Particulate Matter (PM) emissions are lower in the scenarios with CO2 reduction. A scenario with large scale implementation of the oxyfuel technology shows the lowest emissions of PM. In the scenarios with post-combustion capture Non Methane Volatile Organic Compounds emissions may increase due to the emission of solvents used in the capture process. The main conclusion is that climate policy and air quality policy are entwined and may result in synergies and trade-offs. Quantification of these synergies and trade-offs however encompasses inaccuracies due to data uncertainty and knowledge gaps. (C) 2008 Elsevier Ltd. All rights reserved.
机构:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, HangzhouState Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou
Wang T.
Dong H.
论文数: 0引用数: 0
h-index: 0
机构:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, HangzhouState Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou
Dong H.
Hou C.-L.
论文数: 0引用数: 0
h-index: 0
机构:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, HangzhouState Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou
Hou C.-L.
Wang X.-R.
论文数: 0引用数: 0
h-index: 0
机构:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, HangzhouState Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou
Wang X.-R.
Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science),
2022,
56
(03):
: 462
-
475
机构:
InnoSense LLC, Torrance, CA USAUniv Utah, Dept Chem Engn, Salt Lake City, UT 84112 USA
Manankandayalage, Chamila
Alam, Maksudul M.
论文数: 0引用数: 0
h-index: 0
机构:
InnoSense LLC, Torrance, CA USAUniv Utah, Dept Chem Engn, Salt Lake City, UT 84112 USA
Alam, Maksudul M.
Deo, Milind
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utah, Dept Chem Engn, Salt Lake City, UT 84112 USA
Univ Utah, Energy & Geosci Inst, Salt Lake City, UT USAUniv Utah, Dept Chem Engn, Salt Lake City, UT 84112 USA