Understanding the performance of membrane for direct air capture of CO2

被引:1
|
作者
Panja, Palash [1 ,2 ,4 ]
Manankandayalage, Chamila [3 ]
Alam, Maksudul M. [3 ]
Deo, Milind [1 ,2 ]
机构
[1] Univ Utah, Dept Chem Engn, Salt Lake City, UT 84112 USA
[2] Univ Utah, Energy & Geosci Inst, Salt Lake City, UT USA
[3] InnoSense LLC, Torrance, CA USA
[4] Univ Utah, Dept Chem Engn, 50 Cent Campus Dr, Salt Lake City, UT 84112 USA
关键词
CO2; recovery; direct air capture (DAC); material selectivity; membrane separation; stage cut; CARBON-DIOXIDE CAPTURE; RECENT PROGRESS; PERMEATION;
D O I
10.1002/app.54802
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Direct air capture (DAC) of CO2 is becoming increasingly important for reducing greenhouse gas concentrations in the atmosphere. However, the cost and energy requirements associated with DAC make it less economically feasible than carbon capture from flue gases. While various methods like solid sorbents and gas-liquid absorption have been explored for DAC, membrane processes have only recently been investigated. The objective of this study is to examine the separation performance of a membrane unit for capturing CO2 from ambient air. The performance of a membrane depends on several factors, including the composition of the feed gas, pressure ratio, material selectivity, and membrane area. The single-stage separation process with the co-current flow and constant permeability flux model is evaluated using a commercial module integrated with a process simulator to separate a binary mixture of carbon dioxide and nitrogen to assess the sensitivity of selectivity on purity and recovery of CO2 in permeate, and power requirement. Additionally, three levels of CO2 reduction from the feed stream to the retentate stream (25%, 50%, and 75%) are studied. A trade-off between purity and recovery factor is observed, and achieving high purity in permeate requires high concentration in the retentate.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Pricing CO2 Direct Air Capture
    Sutherland, Brandon R.
    [J]. JOULE, 2019, 3 (07) : 1571 - 1573
  • [2] Scalable and Highly Porous Membrane Adsorbents for Direct Air Capture of CO2
    Tran, Thien
    Singh, Shweta
    Cheng, Shiwang
    Lin, Haiqing
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (17) : 22715 - 22723
  • [3] A new relevant membrane application: CO2 direct air capture (DAC)
    Castro-Munoz, Roberto
    Ahmad, Mohd Zamidi
    Malankowska, Magdalena
    Coronas, Joaquin
    [J]. CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [4] Direct Air Capture of CO2 by Physisorbent Materials
    Kumar, Amrit
    Madden, David G.
    Lusi, Matteo
    Chen, Kai-Jie
    Daniels, Emma A.
    Curtin, Teresa
    Perry, John J.
    Zaworotko, Michael J.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (48) : 14372 - 14377
  • [5] Review of CO2 direct air capture adsorbents
    Wang, Tao
    Dong, Hao
    Hou, Cheng-Long
    Wang, Xin-Ru
    [J]. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (03): : 462 - 475
  • [6] Direct capture and separation of CO2 from air
    Teong, Siew Ping
    Zhang, Yugen
    [J]. GREEN ENERGY & ENVIRONMENT, 2024, 9 (03) : 413 - 416
  • [7] Pyrrolizidines for direct air capture and CO2 conversion
    Hanusch, Jan M.
    Kerschgens, Isabel P.
    Huber, Florian
    Neuburger, Markus
    Gademann, Karl
    [J]. CHEMICAL COMMUNICATIONS, 2019, 55 (07) : 949 - 952
  • [8] Direct capture and separation of CO2 from air
    Siew Ping Teong
    Yugen Zhang
    [J]. Green Energy & Environment, 2024, 9 (03) : 413 - 416
  • [9] Sorption direct air capture with CO2 utilization
    Jiang, L.
    Liu, W.
    Wang, R. Q.
    Gonzalez-Diaz, A.
    Rojas-Michaga, M. F.
    Michailos, S.
    Pourkashanian, M.
    Zhang, X. J.
    Font-Palma, C.
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2023, 95
  • [10] Direct Air Capture of CO2 Using Solvents
    Custelcean, Radu
    [J]. ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, 2022, 13 : 217 - 234