Direct capture and separation of CO2 from air

被引:1
|
作者
Teong, Siew Ping [1 ]
Zhang, Yugen [1 ]
机构
[1] ASTAR, Inst Sustainabil Chem Energy & Environm ISCE2, 1 Pesek Rd Jurong Isl, Singapore 627833, Singapore
关键词
CLIMATE-CHANGE;
D O I
10.1016/j.gee.2023.06.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Direct air capture (DAC) has attracted increasing interest and investment over the past few years. There are a fast-growing number of companies that entered the field and demonstrated DAC carbon removal setups and potential. However, current DAC methods are still based on solid absorbents or alkali solutions approaches which have low capture efficiency and low energy efficiency. This highlight proposed a promising CO2 capture technology, an electric energy driven closed-loop system for the direct removal of CO2 from ambient air which are based on two individual technologies: Polyam-N-Cu hybrid system promoted CO2 capture with ocean as anthropogenic CO2 sink and a chloride-mediated electrochemical pH swing system to remove CO2 from oceanwater. (c) 2023 Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY -NC -ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:413 / 416
页数:4
相关论文
共 50 条
  • [1] Direct capture and separation of CO2 from air
    Siew Ping Teong
    Yugen Zhang
    [J]. Green Energy & Environment, 2024, 9 (03) : 413 - 416
  • [2] Direct Capture of CO2 from Ambient Air
    Sanz-Perez, Eloy S.
    Murdock, Christopher R.
    Didas, Stephanie A.
    Jones, Christopher W.
    [J]. CHEMICAL REVIEWS, 2016, 116 (19) : 11840 - 11876
  • [3] Sorbents for the Direct Capture of CO2 from Ambient Air
    Shi, Xiaoyang
    Xiao, Hang
    Azarabadi, Habib
    Song, Juzheng
    Wu, Xiaolong
    Chen, Xi
    Lackner, Klaus S.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (18) : 6984 - 7006
  • [4] Pricing CO2 Direct Air Capture
    Sutherland, Brandon R.
    [J]. JOULE, 2019, 3 (07) : 1571 - 1573
  • [5] Electrochemical Conversion of CO2 from Direct Air Capture Solutions
    Gutierrez-Sanchez, Oriol
    de Mot, Bert
    Daems, Nick
    Bulut, Metin
    Vaes, Jan
    Pant, Deepak
    Breugelmans, Tom
    [J]. ENERGY & FUELS, 2022, 36 (21) : 13115 - 13123
  • [6] Direct Air Capture of CO2 by Physisorbent Materials
    Kumar, Amrit
    Madden, David G.
    Lusi, Matteo
    Chen, Kai-Jie
    Daniels, Emma A.
    Curtin, Teresa
    Perry, John J.
    Zaworotko, Michael J.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (48) : 14372 - 14377
  • [7] Review of CO2 direct air capture adsorbents
    Wang, Tao
    Dong, Hao
    Hou, Cheng-Long
    Wang, Xin-Ru
    [J]. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (03): : 462 - 475
  • [8] Direct Air Capture of CO2 Using Solvents
    Custelcean, Radu
    [J]. ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, 2022, 13 : 217 - 234
  • [9] Sorption direct air capture with CO2 utilization
    Jiang, L.
    Liu, W.
    Wang, R. Q.
    Gonzalez-Diaz, A.
    Rojas-Michaga, M. F.
    Michailos, S.
    Pourkashanian, M.
    Zhang, X. J.
    Font-Palma, C.
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2023, 95
  • [10] Pyrrolizidines for direct air capture and CO2 conversion
    Hanusch, Jan M.
    Kerschgens, Isabel P.
    Huber, Florian
    Neuburger, Markus
    Gademann, Karl
    [J]. CHEMICAL COMMUNICATIONS, 2019, 55 (07) : 949 - 952