Federated Learning for Enablement of Digital Twin

被引:4
|
作者
Patwardhan, Amit [1 ]
Thaduri, Adithya [1 ]
Karim, Ramin [1 ]
Castano, Miguel [1 ]
机构
[1] Lulea Univ Technol, Div Operat & Maintenance Engn, Lulea, Sweden
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 02期
关键词
Digital twin; federated learning; LiDAR; point cloud; railway catenary; LIDAR;
D O I
10.1016/j.ifacol.2022.04.179
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Creation, maintenance, and update of digital twins are costly and time-consuming mechanisms. The required effort can be optimized with the use of LiDAR technologies, which support the process of collecting data related to spatial information such as location, geometry, and position. Sharing such data in multi-stakeholder environments is hindered due to competition, confidentiality, and security requirements. Multi-stakeholder environments favor the use of decentralized creation and update mechanisms with reduced data exchange. Such mechanisms are facilitated by Federated Learning, where the learning process is performed at the data owner's location. Two case studies are presented in this paper, where LiDAR is used to extract information from industrial equipment as a part of the creation of a digital twin.
引用
收藏
页码:114 / 119
页数:6
相关论文
共 50 条
  • [41] Digital Twin-Empowered Federated Incremental Learning for Non-IID Privacy Data
    Wang, Qian
    Chen, Siguang
    Wu, Meng
    Li, Xue
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (05) : 3860 - 3877
  • [42] Incentive-Based Federated Learning for Digital-Twin-Driven Industrial Mobile Crowdsensing
    Li, Beibei
    Shi, Yaxin
    Kong, Qinglei
    Du, Qingyun
    Lu, Rongxing
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (20) : 17851 - 17864
  • [43] Blockchain Empowered Federated Learning with Edge Computing for Digital Twin Systems in Urban Air Mobility
    Nguyen, Tuan Anh
    Kaliappan, Vishnu Kumar
    Jeon, Sangwoo
    Jeon, Kwon-Su
    Lee, Jae-Woo
    Min, Dugki
    PROCEEDINGS OF THE 2021 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY (APISAT 2021), VOL 2, 2023, 913 : 935 - 950
  • [44] Digital Twin-Assisted Federated Learning Service Provisioning Over Mobile Edge Networks
    Zhang, Ruirui
    Xie, Zhenzhen
    Yu, Dongxiao
    Liang, Weifa
    Cheng, Xiuzhen
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (02) : 586 - 598
  • [45] Joint Optimization of Edge Selection and Resource Allocation in Digital Twin-assisted Federated Learning
    Tang L.
    Wen M.
    Shan Z.
    Chen Q.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (04): : 1343 - 1352
  • [46] Digital Twin-Assisted Semi-Federated Learning Framework for Industrial Edge Intelligence
    Wu Xiongyue
    Tang Jianhua
    Marie Siew
    ChinaCommunications, 2024, 21 (05) : 314 - 329
  • [47] Digital Twin for Optimization of Slicing-Enabled Communication Networks: A Federated Graph Learning Approach
    Abdel-Basset, Mohamed
    Hawash, Hossam
    Sallam, Karam M.
    Elgendi, Ibrahim
    Munasinghe, Kumudu
    IEEE COMMUNICATIONS MAGAZINE, 2023, 61 (10) : 100 - 106
  • [48] Energy Minimization with Secrecy Provisioning in Federated Learning-assisted Marine Digital Twin Networks
    Qian, Li Ping
    Li, Mingqing
    Dong, Xinyu
    Wu, Yuan
    Yang, Xiaoniu
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 1 - 6
  • [49] Fortifying Federated Learning in IIoT: Leveraging Blockchain and Digital Twin Innovations for Enhanced Security and Resilience
    Prathiba, Sahaya Beni
    Govindarajan, Yeshwanth
    Pranav Amirtha Ganesan, Vishal
    Ramachandran, Anirudh
    Selvaraj, Arikumar K.
    Kashif Bashir, Ali
    Reddy Gadekallu, Thippa
    IEEE ACCESS, 2024, 12 : 68968 - 68980
  • [50] Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems
    Tang, Yongyi
    Wang, Kunlun
    Niyato, Dusit
    Chen, Wen
    Karagiannidis, George K.
    arXiv,