Fortifying Federated Learning in IIoT: Leveraging Blockchain and Digital Twin Innovations for Enhanced Security and Resilience

被引:3
|
作者
Prathiba, Sahaya Beni [1 ]
Govindarajan, Yeshwanth [2 ]
Pranav Amirtha Ganesan, Vishal [2 ]
Ramachandran, Anirudh [2 ]
Selvaraj, Arikumar K. [3 ]
Kashif Bashir, Ali [4 ,5 ,6 ]
Reddy Gadekallu, Thippa [7 ,8 ]
机构
[1] Vellore Inst Technol, Ctr Cyber Phys Syst, Sch Comp Sci & Engn, Chennai 600127, India
[2] Vellore Inst Technol, Sch Comp Sci & Engn, Chennai 600127, India
[3] SRM Inst Sci & Technol SRMIST, Coll Engn & Technol, Dept Data Sci & Business Syst, Kattankulathur 603203, India
[4] Manchester Metropolitan Univ, Dept Comp & Math, Manchester M15 6BH, Lancs, England
[5] Woxsen Univ, Woxsen Sch Business, Hyderabad 502345, India
[6] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 135053, Lebanon
[7] Lovely Profess Univ, Div Res & Dev, Phagwara 144001, India
[8] Chitkara Univ, Ctr Res Impact & Outcome, Rajpura 140401, Punjab, India
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Data models; Industrial Internet of Things; Blockchains; Training; Security; Digital twins; Servers; Federated learning; Data integrity; Nonfungible tokens; Blockchain; data poisoning; decentralized federated learning; digital twin; industrial internet of things; model poisoning; non-fungible tokens; Sybil attack;
D O I
10.1109/ACCESS.2024.3401039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ensuring robustness against adversarial attacks is imperative for Machine Learning (ML) systems within the critical infrastructures of the Industrial Internet of Things (IIoT). This paper addresses vulnerabilities in IIoT systems, particularly in distributed environments like Federated Learning (FL) by presenting a resilient framework - Secure Federated Learning (SFL) specifically designed to mitigate data and model poisoning, as well as Sybil attacks within these networks. Sybil attacks, involving the creation of multiple fake identities, and poisoning attacks significantly compromise the integrity and reliability of ML models in FL environments. Our SFL framework leverages a Digital Twin (DT) as a critical aggregation checkpoint to counteract data and model poisoning attacks in IIoT's distributed settings. The DT serves as a protective mechanism during the model update aggregation phase, substantially enhancing the system's resilience. To further secure IIoT infrastructures, SFL employs blockchain-based Non-Fungible Tokens (NFTs) to authenticate participant identities, effectively preventing Sybil attacks by ensuring traceability and accountability among distributed nodes. Experimental evaluation within IIoT scenarios demonstrates that SFL substantially enhances defensive capabilities, maintaining the integrity and robustness of model learning. Comparative results reveal that the SFL framework, when applied to IIoT federated environments, achieves a commendable 97% accuracy, outperforming conventional FL approaches. SFL also demonstrates a remarkable reduction in loss rate, recording just 0.07 compared to the 0.14 loss rate experienced by standard FL systems. These findings highlight the efficiency and applicability of the SFL framework in enhancing data security and traceability within the IIoT ecosystem.
引用
收藏
页码:68968 / 68980
页数:13
相关论文
共 50 条
  • [1] Distributed Resource Optimization With Blockchain Security for Immersive Digital Twin in IIoT
    Song, Jing
    Kang, Ya
    Song, Qingyang
    Guo, Lei
    Jamalipour, Abbas
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (05) : 7258 - 7267
  • [2] Blockchain and Federated Learning Empowered Digital Twin for Effective Healthcare
    Joo, Yunsang
    Camacho, David
    Boi, Biagio
    Esposito, Christian
    Choi, Chang
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2024, 14
  • [3] Blockchain-Enabled Secure Federated Learning for Digital Twin Networks
    Cai, Lingyi
    Hu, Qiwei
    Jiang, Tao
    Niyato, Dusit
    IEEE WIRELESS COMMUNICATIONS, 2024,
  • [4] Resources-Efficient Adaptive Federated Learning for Digital Twin-Enabled IIoT
    Qiao, Dewen
    Li, Mingyan
    Guo, Songtao
    Zhao, Jun
    Xiao, Bin
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (04): : 3639 - 3652
  • [5] Fortifying the Blockchain: A Systematic Review and Classification of Post-Quantum Consensus Solutions for Enhanced Security and Resilience
    Gomes Jr, Jorao
    Khan, Sajjad
    Svetinovic, Davor
    IEEE ACCESS, 2023, 11 : 74088 - 74100
  • [6] A survey on blockchain-enabled federated learning and its prospects with digital twin
    Liu, Kangde
    Yan, Zheng
    Liang, Xueqin
    Kantola, Raimo
    Hu, Chuangyue
    DIGITAL COMMUNICATIONS AND NETWORKS, 2024, 10 (02) : 248 - 264
  • [7] A survey on blockchain-enabled federated learning and its prospects with digital twin
    Kangde Liu
    Zheng Yan
    Xueqin Liang
    Raimo Kantola
    Chuangyue Hu
    Digital Communications and Networks, 2024, 10 (02) : 248 - 264
  • [8] Distributed IIoT Anomaly Detection Scheme Based on Blockchain and Federated Learning
    Jin, Xiaojun
    Ma, Chao
    Luo, Song
    Zeng, Pengyi
    Wei, Yifei
    JOURNAL OF COMMUNICATIONS AND NETWORKS, 2024, 26 (02) : 252 - 262
  • [9] FedTwin: Blockchain-Enabled Adaptive Asynchronous Federated Learning for Digital Twin Networks
    Qu, Youyang
    Gao, Longxiang
    Xiang, Yong
    Shen, Shigen
    Yu, Shui
    IEEE NETWORK, 2022, 36 (06): : 183 - 190
  • [10] Communication-Efficient Federated Learning and Permissioned Blockchain for Digital Twin Edge Networks
    Lu, Yunlong
    Huang, Xiaohong
    Zhang, Ke
    Maharjan, Sabita
    Zhang, Yan
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (04) : 2276 - 2288