An approach to the relativistic brachistochrone problem by sub-Riemannian geometry

被引:11
|
作者
Giannoni, F [1 ]
Piccione, P [1 ]
Verderesi, JA [1 ]
机构
[1] UNIV SAO PAULO,INST MATEMAT & ESTAT,SAO PAULO,BRAZIL
关键词
D O I
10.1063/1.532217
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate a brachistochrone problem in Lorentzian geometry and we prove a variational principle valid for brachistochrones in stationary manifolds. This variational principle is stated in terms of geodesics in a suitable sub-Riemannian structure on M. Moreover, we prove the regularity of the solutions of our variational problem and we determine a differential equation satisfied by the brachistochrones, Some explicit examples are computed. (C) 1997 American Institute of Physics.
引用
收藏
页码:6367 / 6381
页数:15
相关论文
共 50 条
  • [21] Branching Geodesics in Sub-Riemannian Geometry
    Mietton, Thomas
    Rizzi, Luca
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2020, 30 (04) : 1139 - 1151
  • [22] Sub-Riemannian geometry and subelliptic PDEs
    Greiner, PC
    [J]. PARTIAL DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS: IN MEMORY OF JEAN LERAY, 2003, 52 : 105 - 110
  • [23] Branching Geodesics in Sub-Riemannian Geometry
    Thomas Mietton
    Luca Rizzi
    [J]. Geometric and Functional Analysis, 2020, 30 : 1139 - 1151
  • [24] The tangent space in sub-riemannian geometry
    Bellaïche A.
    [J]. Journal of Mathematical Sciences, 1997, 83 (4) : 461 - 476
  • [25] Characteristic Laplacian in Sub-Riemannian Geometry
    Daniel, Jeremy
    Ma, Xiaonan
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (24) : 13290 - 13323
  • [26] Sub-Riemannian Curvature in Contact Geometry
    Agrachev, Andrei
    Barilari, Davide
    Rizzi, Luca
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (01) : 366 - 408
  • [27] NONHOLONOMIC SYSTEMS AND SUB-RIEMANNIAN GEOMETRY
    Calin, Ovidiu
    Chang, Der-Chen
    Yau, Stephen S. T.
    [J]. COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2010, 10 (04) : 293 - 316
  • [28] SUB-RIEMANNIAN GEOMETRY OF STIEFEL MANIFOLDS
    Autenried, Christian
    Markina, Irina
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (02) : 939 - 959
  • [29] On the Hausdorff volume in sub-Riemannian geometry
    Agrachev, Andrei
    Barilari, Davide
    Boscain, Ugo
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 43 (3-4) : 355 - 388
  • [30] A contact covariant approach to optimal control with applications to sub-Riemannian geometry
    Michał Jóźwikowski
    Witold Respondek
    [J]. Mathematics of Control, Signals, and Systems, 2016, 28