Sensor Placement for Multi-Fidelity Dynamics Model Calibration

被引:1
|
作者
Absi, G. N. [1 ]
Mahadevan, S. [1 ]
机构
[1] Vanderbilt Univ, Dept Civil & Environm Engn, Nashville, TN 37235 USA
关键词
Bayesian calibration; Multi-fidelity; Optimization; Sensor location; Structural dynamics; OPTIMAL INSTRUMENTATION; RELIABILITY-ANALYSIS; IDENTIFICATION; OPTIMIZATION; LOCATIONS; ENTROPY;
D O I
10.1007/978-3-030-12075-7_6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper studies a multi-fidelity resource optimization methodology for sensor location in the calibration of dynamics model parameters. Effective calibration can only be achieved if the information collection in the experiments is successful. This requires a thoughtful study of the sensor configuration to maximize information gain in the calibration of system parameters. This paper proposes a framework for optimizing the sensor number and locations to maximize information gain in the calibration of damping parameters for non-linear dynamics problems. Further, we extend the basic framework to the case of multi-fidelity modeling. In the presence of models of multiple fidelity, runs from the high-fidelity model can be used to correct the low-fidelity surrogate and result in stronger physics-informed priors for calibration with experimental data. This multi-fidelity calibration allows the fusion of information from low and high-fidelity models in inverse problems. The proposed sensor optimization methodology is illustrated for a curved panel subjected to acoustic and non-uniform thermal loading. Two models of different fidelity (a time history analysis and a frequency domain analysis) are employed to calibrate the structure's damping parameters and model errors. The optimization methodology considers two complicating factors: (1) the damping behavior is input-dependent, and (2) the sensor uncertainty is affected by temperature.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 50 条
  • [21] A multi-fidelity surrogate model based on support vector regression
    Maolin Shi
    Liye Lv
    Wei Sun
    Xueguan Song
    Structural and Multidisciplinary Optimization, 2020, 61 : 2363 - 2375
  • [22] An Adaptive Multi-Fidelity Surrogate Model for Uncertainty Propagation Analysis
    Xiao, Wei
    Shen, Yingying
    Zhao, Jiao
    Lv, Luogeng
    Chen, Jiangtao
    Zhao, Wei
    APPLIED SCIENCES-BASEL, 2025, 15 (06):
  • [23] A multi-fidelity surrogate model based on design variable correlations
    Lai, Xiaonan
    Pang, Yong
    Liu, Fuwen
    Sun, Wei
    Song, Xueguan
    ADVANCED ENGINEERING INFORMATICS, 2024, 59
  • [24] Multi-fidelity surrogate model ensemble based on feasible intervals
    Shuai Zhang
    Pengwei Liang
    Yong Pang
    Jianji Li
    Xueguan Song
    Structural and Multidisciplinary Optimization, 2022, 65
  • [25] Hybrid uncertainty propagation based on multi-fidelity surrogate model
    Liu, Jinxing
    Shi, Yan
    Ding, Chen
    Beer, Michael
    COMPUTERS & STRUCTURES, 2024, 293
  • [26] A multi-fidelity surrogate model based on support vector regression
    Shi, Maolin
    Lv, Liye
    Sun, Wei
    Song, Xueguan
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (06) : 2363 - 2375
  • [27] Multi-fidelity surrogate model ensemble based on feasible intervals
    Zhang, Shuai
    Liang, Pengwei
    Pang, Yong
    Li, Jianji
    Song, Xueguan
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (08)
  • [28] The Multi-fidelity Multi-armed Bandit
    Kandasamy, Kirthevasan
    Dasarathy, Gautam
    Schneider, Jeff
    Poczos, Barnabas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [29] Multi-fidelity enhanced few-shot time series prediction model for structural dynamics analysis
    Zhong, Qiang-Ming
    Feng, De-Cheng
    Chen, Shi-Zhi
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 434
  • [30] MULTI-FIDELITY REDUCED-ORDER MODELS FOR MULTISCALE DAMAGE ANALYSES WITH AUTOMATIC CALIBRATION
    Deng, Shiguang
    Mora, Carlos
    Apelian, Diran
    Bostanabad, Ramin
    PROCEEDINGS OF ASME 2022 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2022, VOL 3B, 2022,