The Multi-fidelity Multi-armed Bandit

被引:0
|
作者
Kandasamy, Kirthevasan [1 ]
Dasarathy, Gautam [2 ]
Schneider, Jeff [1 ]
Poczos, Barnabas [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Rice Univ, Houston, TX 77251 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study a variant of the classical stochastic K-armed bandit where observing the outcome of each arm is expensive, but cheap approximations to this outcome are available. For example, in online advertising the performance of an ad can be approximated by displaying it for shorter time periods or to narrower audiences. We formalise this task as a multi fidelity bandit, where, at each time step, the forecaster may choose to play an arm at any one of M fidelities. The highest fidelity (desired outcome) expends cost lambda((M)). The mth fidelity (an approximation) expends lambda((M)) < lambda((M)) and returns a biased estimate of the highest fidelity. We develop MF-UCB, a novel upper confidence bound procedure for this setting and prove that it naturally adapts to the sequence of available approximations and costs thus attaining better regret than naive strategies which ignore the approximations. For instance, in the above online advertising example, MF-UCB would use the lower fidelities to quickly eliminate suboptimal ads and reserve the larger expensive experiments on a small set of promising candidates. We complement this result with a lower bound and show that MF-UCB is nearly optimal under certain conditions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Multi-Fidelity Multi-Armed Bandits Revisited
    Wang, Xuchuang
    Wu, Qingyun
    Chen, Wei
    Lui, John C. S.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [2] The multi-armed bandit, with constraints
    Eric V. Denardo
    Eugene A. Feinberg
    Uriel G. Rothblum
    Annals of Operations Research, 2013, 208 : 37 - 62
  • [3] The multi-armed bandit, with constraints
    Denardo, Eric V.
    Feinberg, Eugene A.
    Rothblum, Uriel G.
    ANNALS OF OPERATIONS RESEARCH, 2013, 208 (01) : 37 - 62
  • [4] The Assistive Multi-Armed Bandit
    Chan, Lawrence
    Hadfield-Menell, Dylan
    Srinivasa, Siddhartha
    Dragan, Anca
    HRI '19: 2019 14TH ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION, 2019, : 354 - 363
  • [5] Multi-armed bandit games
    Gursoy, Kemal
    ANNALS OF OPERATIONS RESEARCH, 2024,
  • [6] Dynamic Multi-Armed Bandit with Covariates
    Pavlidis, Nicos G.
    Tasoulis, Dimitris K.
    Adams, Niall M.
    Hand, David J.
    ECAI 2008, PROCEEDINGS, 2008, 178 : 777 - +
  • [7] Scaling Multi-Armed Bandit Algorithms
    Fouche, Edouard
    Komiyama, Junpei
    Boehm, Klemens
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1449 - 1459
  • [8] The budgeted multi-armed bandit problem
    Madani, O
    Lizotte, DJ
    Greiner, R
    LEARNING THEORY, PROCEEDINGS, 2004, 3120 : 643 - 645
  • [9] The Multi-Armed Bandit With Stochastic Plays
    Lesage-Landry, Antoine
    Taylor, Joshua A.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (07) : 2280 - 2286
  • [10] Satisficing in Multi-Armed Bandit Problems
    Reverdy, Paul
    Srivastava, Vaibhav
    Leonard, Naomi Ehrich
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 3788 - 3803