The Multi-fidelity Multi-armed Bandit

被引:0
|
作者
Kandasamy, Kirthevasan [1 ]
Dasarathy, Gautam [2 ]
Schneider, Jeff [1 ]
Poczos, Barnabas [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Rice Univ, Houston, TX 77251 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study a variant of the classical stochastic K-armed bandit where observing the outcome of each arm is expensive, but cheap approximations to this outcome are available. For example, in online advertising the performance of an ad can be approximated by displaying it for shorter time periods or to narrower audiences. We formalise this task as a multi fidelity bandit, where, at each time step, the forecaster may choose to play an arm at any one of M fidelities. The highest fidelity (desired outcome) expends cost lambda((M)). The mth fidelity (an approximation) expends lambda((M)) < lambda((M)) and returns a biased estimate of the highest fidelity. We develop MF-UCB, a novel upper confidence bound procedure for this setting and prove that it naturally adapts to the sequence of available approximations and costs thus attaining better regret than naive strategies which ignore the approximations. For instance, in the above online advertising example, MF-UCB would use the lower fidelities to quickly eliminate suboptimal ads and reserve the larger expensive experiments on a small set of promising candidates. We complement this result with a lower bound and show that MF-UCB is nearly optimal under certain conditions.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Variational inference for the multi-armed contextual bandit
    Urteaga, Inigo
    Wiggins, Chris H.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [42] Multi-fidelity Gaussian Process Bandit Optimisation
    Kandasamy, Kirthevasan
    Dasarathy, Gautam
    Oliva, Junier
    Schneider, Jeff
    Poczos, Barnabas
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2019, 66 : 151 - 196
  • [43] Multi-objective Contextual Multi-armed Bandit With a Dominant Objective
    Tekin, Cem
    Turgay, Eralp
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (14) : 3799 - 3813
  • [44] Multi-user lax communications: a multi-armed bandit approach
    Avner, Orly
    Mannor, Shie
    IEEE INFOCOM 2016 - THE 35TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS, 2016,
  • [45] An Incentive-Compatible Multi-Armed Bandit Mechanism
    Gonen, Rica
    Pavlov, Elan
    PODC'07: PROCEEDINGS OF THE 26TH ANNUAL ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2007, : 362 - 363
  • [46] Gaussian multi-armed bandit problems with multiple objectives
    Reverdy, Paul
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 5263 - 5269
  • [47] Achieving Fairness in the Stochastic Multi-Armed Bandit Problem
    Patil, Vishakha
    Ghalme, Ganesh
    Nair, Vineet
    Narahari, Y.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [48] Multi-armed Bandit Algorithm against Strategic Replication
    Shin, Suho
    Lee, Seungjoon
    Ok, Jungseul
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151 : 403 - 431
  • [49] Adaptive Active Learning as a Multi-armed Bandit Problem
    Czarnecki, Wojciech M.
    Podolak, Igor T.
    21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 989 - 990
  • [50] A Contextual Multi-Armed Bandit approach for NDN forwarding
    Mordjana, Yakoub
    Djamaa, Badis
    Senouci, Mustapha Reda
    Herzallah, Aymen
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 230