Control functionals for Monte Carlo integration

被引:102
|
作者
Oates, Chris J. [1 ]
Girolami, Mark [2 ,3 ]
Chopin, Nicolas [4 ,5 ]
机构
[1] Univ Technol Sydney, Sydney, NSW, Australia
[2] Univ Warwick, Coventry, W Midlands, England
[3] Alan Turing Inst, London, England
[4] Ctr Rech Econ & Stat, Paris, France
[5] Ecole Natl Stat & Adm Econ, Paris, France
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
Control variates; Non-parametrics; Reproducing kernel; Stein's identity; Variance reduction; PRINCIPLE; MODELS;
D O I
10.1111/rssb.12185
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A non-parametric extension of control variates is presented. These leverage gradient information on the sampling density to achieve substantial variance reduction. It is not required that the sampling density be normalized. The novel contribution of this work is based on two important insights: a trade-off between random sampling and deterministic approximation and a new gradient-based function space derived from Stein's identity. Unlike classical control variates, our estimators improve rates of convergence, often requiring orders of magnitude fewer simulations to achieve a fixed level of precision. Theoretical and empirical results are presented, the latter focusing on integration problems arising in hierarchical models and models based on non-linear ordinary differential equations.
引用
收藏
页码:695 / 718
页数:24
相关论文
共 50 条
  • [21] Exponential Integration for Hamiltonian Monte Carlo
    Chao, Wei-Lun
    Solomon, Justin
    Michels, Dominik L.
    Sha, Fei
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1142 - 1151
  • [22] Monte Carlo complexity of parametric integration
    Heinrich, S
    Sindambiwe, E
    JOURNAL OF COMPLEXITY, 1999, 15 (03) : 317 - 341
  • [23] The optimal error of Monte Carlo integration
    Mathe, P
    JOURNAL OF COMPLEXITY, 1995, 11 (04) : 394 - 415
  • [24] TRAPEZOIDAL MONTE-CARLO INTEGRATION
    MASRY, E
    CAMBANIS, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (01) : 225 - 246
  • [25] Improving Monte Carlo integration by symmetrization
    Hartung, Tobias
    Jansen, Karl
    Leoevey, Hernan
    Volmer, Julia
    DIVERSITY AND BEAUTY OF APPLIED OPERATOR THEORY, 2018, 268 : 291 - 317
  • [26] WEIGHTED MONTE-CARLO INTEGRATION
    YAKOWITZ, S
    KRIMMEL, JE
    SZIDAROVSZKY, F
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (06) : 1289 - 1300
  • [27] A Generalization of Spatial Monte Carlo Integration
    Yasuda, Muneki
    Uchizawa, Kei
    NEURAL COMPUTATION, 2021, 33 (04) : 1037 - 1062
  • [28] Variance Analysis for Monte Carlo Integration
    Pilleboue, Adrien
    Singh, Gurprit
    Coeurjolly, David
    Kazhdan, Michael
    Ostromoukhov, Victor
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04):
  • [29] QUASI-MONTE CARLO INTEGRATION
    MOROKOFF, WJ
    CAFLISCH, RE
    JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 122 (02) : 218 - 230
  • [30] Monte Carlo integration for Choquet integral
    Agahi, Hamzeh
    Mehri-Dehnavi, Hossein
    Mesiar, Radko
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2019, 34 (06) : 1348 - 1358