Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior

被引:64
|
作者
van Gerven, Marcel A. J. [1 ,2 ]
Cseke, Botond [1 ]
de lange, Floris P. [2 ]
Heskes, Tom [1 ,2 ]
机构
[1] Radboud Univ Nijmegen, Inst Comp & Informat Sci, POB 9010, NL-6500 GL Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, NL-6500 GL Nijmegen, Netherlands
关键词
Multivariate analysis; Bayesian inference; Expectation propagation; Logistic regression; Multivariate Laplace distribution; INFERENCE; SELECTION;
D O I
10.1016/j.neuroimage.2009.11.064
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Bayesian logistic regression with a multivariate Laplace prior is introduced as a multivariate approach to the analysis of neuroimaging data. It is shown that, by rewriting the multivariate Laplace distribution as a scale mixture, we can incorporate spatio-temporal constraints which lead to smooth importance maps that facilitate subsequent interpretation. The posterior of interest is computed using an approximate inference method called expectation propagation and becomes feasible due to fast inversion of a sparse precision matrix. We illustrate the performance of the method on an fMRI dataset acquired while subjects were shown handwritten digits. The obtained models perform competitively in terms of predictive performance and give rise to interpretable importance maps. Estimation of the posterior of interest is shown to be feasible even for very large models with thousands of variables. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:150 / 161
页数:12
相关论文
共 50 条
  • [1] Heirarchical fully Bayesian spatio-temporal analysis of FMRI data
    Woolrich, M
    Brady, M
    Smith, SM
    [J]. NEUROIMAGE, 2001, 13 (06) : S287 - S287
  • [2] Fully Bayesian spatio-temporal modeling of FMRI data
    Woolrich, MW
    Jenkinson, M
    Brady, JM
    Smith, SM
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) : 213 - 231
  • [3] Spatio-temporal fMRI analysis using Markov random fields
    Descombes, X
    Kruggel, F
    von Cramon, DY
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (06) : 1028 - 1039
  • [4] Using the multivariate spatio-temporal Bayesian model to analyze traffic crashes by severity
    Liu, Chenhui
    Sharma, Anuj
    [J]. ANALYTIC METHODS IN ACCIDENT RESEARCH, 2018, 17 : 14 - 31
  • [5] Neural networks for fMRI spatio-temporal analysis
    Luo, HI
    Puthusserypady, S
    [J]. NEURAL INFORMATION PROCESSING, 2004, 3316 : 1292 - 1297
  • [6] Spatio-temporal analysis of plant pests in a greenhouse using a Bayesian approach
    Poncet, Christine
    Lemesle, Valerie
    Mailleret, Ludovic
    Bout, Alexandre
    Boll, Roger
    Vaglio, Joelle
    [J]. AGRICULTURAL AND FOREST ENTOMOLOGY, 2010, 12 (03) : 325 - 332
  • [7] Spatio-temporal modeling and analysis of fMRI data using NARX neural network
    Luo, Huaien
    Puthusserypady, Sadasivan
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2006, 16 (02) : 139 - 149
  • [8] Spatio-temporal accuracy of ICA for FMRI
    Beckmann, CF
    Noble, JA
    Smith, SM
    [J]. NEUROIMAGE, 2001, 13 (06) : S75 - S75
  • [9] Bayesian Modelling and Analysis of Spatio-Temporal Neuronal Networks
    Rigat, Fabio
    de Gunst, Mathisca
    van Pelt, Jaap
    [J]. BAYESIAN ANALYSIS, 2006, 1 (04): : 733 - 764
  • [10] A Bayesian Approach for the Multifractal Analysis of Spatio-Temporal Data
    Combrexelle, S.
    Wendt, H.
    Tourneret, J. -Y.
    Altmann, Y.
    McLaughlin, S.
    Abry, P.
    [J]. PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, (IWSSIP 2016), 2016, : 331 - 334