Semi-automatic classification for rapid delineation of the geohazard-prone areas using Sentinel-2 satellite imagery

被引:14
|
作者
Tempa, Karma [1 ]
Aryal, Komal Raj [2 ]
机构
[1] Royal Univ Bhutan, Coll Sci & Technol, Civil Engn Dept, Ph Uentsholing 21101, Bhutan
[2] Rabdan Acad, Fac Resilience, Abu Dhabi, U Arab Emirates
来源
SN APPLIED SCIENCES | 2022年 / 4卷 / 05期
关键词
Semi-automatic classification; Sentinel-2; ISODATA; Random Forest; Geohazard; Bhutan; LANDSLIDE SUSCEPTIBILITY; LAND-COVER; RANDOM FOREST; MULTICRITERIA; ACCURACY; GIS;
D O I
10.1007/s42452-022-05028-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The study of land use land cover has become increasingly significant with the availability of remote sensing data. The main objective of this study is to delineate geohazard-prone areas using semi-automatic classification technique and Sentinel-2 satellite imagery in Bhutan. An open-source, semi-automatic classification plugin tools in QGIS software enabled efficient and rapid conduct of land cover classification. Band sets 2-8, 8A, and 11-12 are utilized and the virtual colour composites have been used for the clustering and creation of training samples or regions of interest. An iterative self-organizing data analysis technique is used for clustering and the image is classified by a minimum distance algorithm in the unsupervised classification. The Random Forest (RF) classifier is used for the supervised classification. The unsupervised classification shows an overall accuracy of 85.47% (Kappa coefficient = 0.71) and the RF classifier resulted in an accuracy of 92.62% (Kappa coefficient = 0.86). A comparison of the classification shows a higher overall accuracy of the RF classifier with an improvement of 7.15%. The study highlights 35.59% (512,100 m(2)) of the study area under the geohazard-prone area. The study also overlaid the major landslide polygons to roughly validate the landslide hazards.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Swin Transformer for Complex Coastal Wetland Classification Using the Integration of Sentinel-1 and Sentinel-2 Imagery
    Jamali, Ali
    Mahdianpari, Masoud
    WATER, 2022, 14 (02)
  • [42] Evaluation of TsHARP Utility for Thermal Sharpening of Sentinel-3 Satellite Images Using Sentinel-2 Visual Imagery
    Huryna, Hanna
    Cohen, Yafit
    Karnieli, Arnon
    Panov, Natalya
    Kustas, William P.
    Agam, Nurit
    REMOTE SENSING, 2019, 11 (19)
  • [43] Tree Species Mapping on Sentinel-2 Satellite Imagery with Weakly Supervised Classification and Object-Wise Sampling
    Illarionova, Svetlana
    Trekin, Alexey
    Ignatiev, Vladimir
    Oseledets, Ivan
    FORESTS, 2021, 12 (10):
  • [44] ASSESSMENT OF SENTINEL-1 AND SENTINEL-2 SATELLITE IMAGERY FOR CROP CLASSIFICATION IN INDIAN REGION DURING KHARIF AND RABI CROP CYCLES
    Singh, Jitendra
    Mahapatra, Aniruddha
    Basu, Saurav
    Banerjee, Biplab
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3720 - 3723
  • [45] A new method for pixel classification for rice variety identification using spectral and time series data from Sentinel-2 satellite imagery
    Rauf, Usman
    Qureshi, Waqar S.
    Jabbar, Hamid
    Zeb, Ayesha
    Mirza, Alina
    Alanazi, Eisa
    Khan, Umar S.
    Rashid, Nasir
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 193
  • [46] Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery
    Bolyn, Corentin
    Michez, Adrien
    Gaucher, Peter
    Lejeune, Philippe
    Bonnet, Stephanie
    BIOTECHNOLOGIE AGRONOMIE SOCIETE ET ENVIRONNEMENT, 2018, 22 (03): : 172 - 187
  • [47] Image Classification and Land Cover Mapping Using Sentinel-2 Imagery: Optimization of SVM Parameters
    Yousefi, Saleh
    Mirzaee, Somayeh
    Almohamad, Hussein
    Al Dughairi, Ahmed Abdullah
    Gomez, Christopher
    Siamian, Narges
    Alrasheedi, Mona
    Abdo, Hazem Ghassan
    LAND, 2022, 11 (07)
  • [48] An Adaptive Feature Fusion Network with Superpixel Optimization for Crop Classification Using Sentinel-2 Imagery
    Tian, Xiangyu
    Bai, Yongqing
    Li, Guoqing
    Yang, Xuan
    Huang, Jianxi
    Chen, Zhengchao
    REMOTE SENSING, 2023, 15 (08)
  • [49] SEMANTIC SEGMENTATION OF BURNED AREAS IN SENTINEL-2 SATELLITE IMAGES USING DEEP LEARNING MODELS
    Ouadou, Anes
    Huangal, David
    Hurt, J. Alex
    Scott, Grant J.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6366 - 6369
  • [50] Forest Disturbance Monitoring Using Cloud-Based Sentinel-2 Satellite Imagery and Machine Learning
    Molnar, Tamas
    Kiraly, Geza
    JOURNAL OF IMAGING, 2024, 10 (01)