Semi-automatic classification for rapid delineation of the geohazard-prone areas using Sentinel-2 satellite imagery

被引:14
|
作者
Tempa, Karma [1 ]
Aryal, Komal Raj [2 ]
机构
[1] Royal Univ Bhutan, Coll Sci & Technol, Civil Engn Dept, Ph Uentsholing 21101, Bhutan
[2] Rabdan Acad, Fac Resilience, Abu Dhabi, U Arab Emirates
来源
SN APPLIED SCIENCES | 2022年 / 4卷 / 05期
关键词
Semi-automatic classification; Sentinel-2; ISODATA; Random Forest; Geohazard; Bhutan; LANDSLIDE SUSCEPTIBILITY; LAND-COVER; RANDOM FOREST; MULTICRITERIA; ACCURACY; GIS;
D O I
10.1007/s42452-022-05028-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The study of land use land cover has become increasingly significant with the availability of remote sensing data. The main objective of this study is to delineate geohazard-prone areas using semi-automatic classification technique and Sentinel-2 satellite imagery in Bhutan. An open-source, semi-automatic classification plugin tools in QGIS software enabled efficient and rapid conduct of land cover classification. Band sets 2-8, 8A, and 11-12 are utilized and the virtual colour composites have been used for the clustering and creation of training samples or regions of interest. An iterative self-organizing data analysis technique is used for clustering and the image is classified by a minimum distance algorithm in the unsupervised classification. The Random Forest (RF) classifier is used for the supervised classification. The unsupervised classification shows an overall accuracy of 85.47% (Kappa coefficient = 0.71) and the RF classifier resulted in an accuracy of 92.62% (Kappa coefficient = 0.86). A comparison of the classification shows a higher overall accuracy of the RF classifier with an improvement of 7.15%. The study highlights 35.59% (512,100 m(2)) of the study area under the geohazard-prone area. The study also overlaid the major landslide polygons to roughly validate the landslide hazards.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Delineation of Wetland Areas in South Norway from Sentinel-2 Imagery and LiDAR Using TensorFlow, U-Net, and Google Earth Engine
    Bakkestuen, Vegar
    Venter, Zander
    Ganerod, Alexandra Jarna
    Framstad, Erik
    REMOTE SENSING, 2023, 15 (05)
  • [32] Evaluation of Land Use/Land Cover Classification based on Different Bands of Sentinel-2 Satellite Imagery using Neural Networks
    Pallavi, M.
    Thivakaran, T. K.
    Ganapathi, Chandankeri
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (10) : 594 - 601
  • [33] Extracting Citrus-Growing Regions by Multiscale UNet Using Sentinel-2 Satellite Imagery
    Li, Yong
    Liu, Wenjing
    Ge, Ying
    Yuan, Sai
    Zhang, Tingxuan
    Liu, Xiuhui
    REMOTE SENSING, 2024, 16 (01)
  • [34] ESTIMATION OF EVAPOTRANSPIRATION OF A VINEYARD OF TABLE GRAPES (Vitis vinifera) USING SENTINEL-2 SATELLITE IMAGERY
    Manuel Salvador-Castillo, Jose
    Alejandro Bolanos-Gonzalez, Martin
    Cesar Rodriguez, Julio
    Palacios-Velez, Enrique
    Alberto Palacios-Sanchez, Luis
    Watts, Christopher
    Lizarraga-Celaya, Carlos
    Ortega-Farias, Samuel
    Er-Raki, Salah
    AGROCIENCIA, 2021, 55 (05) : 369 - 387
  • [35] A Hybrid Bio-Optical Transformation for Satellite Bathymetry Modeling Using Sentinel-2 Imagery
    Mavraeidopoulos, Athanasios K.
    Oikonomou, Emmanouil
    Palikaris, Athanasios
    Poulos, Serafeim
    REMOTE SENSING, 2019, 11 (23)
  • [36] Index-Based Identification of Surface Water Resources Using Sentinel-2 Satellite Imagery
    Sekertekin, Aliihsan
    Cicekli, Sevim Yasemin
    Arslan, Niyazi
    2018 2ND INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT), 2018, : 610 - 614
  • [37] Port Bathymetry Mapping Using Support Vector Machine Technique and Sentinel-2 Satellite Imagery
    Mateo-Perez, Vanesa
    Corral-Bobadilla, Marina
    Ortega-Fernandez, Francisco
    Vergara-Gonzalez, Eliseo P.
    REMOTE SENSING, 2020, 12 (13)
  • [38] Object-based water body extraction model using Sentinel-2 satellite imagery
    Kaplan, Gordana
    Avdan, Ugur
    EUROPEAN JOURNAL OF REMOTE SENSING, 2017, 50 (01) : 137 - 143
  • [39] Towards a fully automatic processing chain for operationally mapping burned areas countrywide exploiting Sentinel-2 imagery
    Stavrakoudis, Dimitris
    Katagis, Thomas
    Minakou, Chara
    Gitas, Ioannis Z.
    SEVENTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2019), 2019, 11174
  • [40] Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets
    Ma, Yue
    Xu, Nan
    Liu, Zhen
    Yang, Bisheng
    Yang, Fanlin
    Wang, Xiao Hua
    Li, Song
    REMOTE SENSING OF ENVIRONMENT, 2020, 250