Semi-automatic classification for rapid delineation of the geohazard-prone areas using Sentinel-2 satellite imagery

被引:14
|
作者
Tempa, Karma [1 ]
Aryal, Komal Raj [2 ]
机构
[1] Royal Univ Bhutan, Coll Sci & Technol, Civil Engn Dept, Ph Uentsholing 21101, Bhutan
[2] Rabdan Acad, Fac Resilience, Abu Dhabi, U Arab Emirates
来源
SN APPLIED SCIENCES | 2022年 / 4卷 / 05期
关键词
Semi-automatic classification; Sentinel-2; ISODATA; Random Forest; Geohazard; Bhutan; LANDSLIDE SUSCEPTIBILITY; LAND-COVER; RANDOM FOREST; MULTICRITERIA; ACCURACY; GIS;
D O I
10.1007/s42452-022-05028-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The study of land use land cover has become increasingly significant with the availability of remote sensing data. The main objective of this study is to delineate geohazard-prone areas using semi-automatic classification technique and Sentinel-2 satellite imagery in Bhutan. An open-source, semi-automatic classification plugin tools in QGIS software enabled efficient and rapid conduct of land cover classification. Band sets 2-8, 8A, and 11-12 are utilized and the virtual colour composites have been used for the clustering and creation of training samples or regions of interest. An iterative self-organizing data analysis technique is used for clustering and the image is classified by a minimum distance algorithm in the unsupervised classification. The Random Forest (RF) classifier is used for the supervised classification. The unsupervised classification shows an overall accuracy of 85.47% (Kappa coefficient = 0.71) and the RF classifier resulted in an accuracy of 92.62% (Kappa coefficient = 0.86). A comparison of the classification shows a higher overall accuracy of the RF classifier with an improvement of 7.15%. The study highlights 35.59% (512,100 m(2)) of the study area under the geohazard-prone area. The study also overlaid the major landslide polygons to roughly validate the landslide hazards.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Semi-automatic classification for rapid delineation of the geohazard-prone areas using Sentinel-2 satellite imagery
    Karma Tempa
    Komal Raj Aryal
    SN Applied Sciences, 2022, 4
  • [2] Greenhouse Mapping using Object Based Classification and Sentinel-2 Satellite Imagery
    Balcik, Filiz Bektas
    Senel, Gizem
    Goksel, Cigdem
    2019 8TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2019,
  • [3] SEMI-AUTOMATIC SEGMENTATION OF NATURA 2000 HABITATS IN SENTINEL-2 SATELLITE IMAGES BY EVOLVING OPEN CURVES
    Mikula, Karol
    Urban, Jozef
    Dollar, Michal
    Ambroz, Martin
    Jarolimek, Ivan
    Sibik, Jozef
    Sibikova, Maria
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (03): : 1033 - 1046
  • [4] Monitoring Riparian Vegetation in Urban Areas With Sentinel-2 Satellite Imagery
    Hislop, Samuel
    Soto-Berelov, Mariela
    Jellinek, Sacha
    Chee, Yung En
    Jones, Simon
    ECOLOGICAL MANAGEMENT & RESTORATION, 2025, 26 (01)
  • [5] Semi-Automatic Methodology for Fire Break Maintenance Operations Detection with Sentinel-2 Imagery and Artificial Neural Network
    Pereira-Pires, Joao E.
    Aubard, Valentine
    Ribeiro, Rita A.
    Fonseca, Jose M.
    Silva, Joao M. N.
    Mora, Andre
    REMOTE SENSING, 2020, 12 (06)
  • [6] LANDSLIDE GEOHAZARD ASSESSMENT WITH CONVOLUTIONAL NEURAL NETWORKS USING SENTINEL-2 IMAGERY DATA
    Ullo, S. L.
    Langenkamp, M. S.
    Oikarinen, T. P.
    Del Rosso, M. P.
    Sebastianelli, A.
    Piccirillo, F.
    Sica, S.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9646 - 9649
  • [7] MAPPING AND MONITORING WETLANDS USING SENTINEL-2 SATELLITE IMAGERY
    Kaplan, G.
    Avdan, U.
    4TH INTERNATIONAL GEOADVANCES WORKSHOP - GEOADVANCES 2017: ISPRS WORKSHOP ON MULTI-DIMENSIONAL & MULTI-SCALE SPATIAL DATA MODELING, 2017, 4-4 (W4): : 271 - 277
  • [8] Tree species classification using semi-automatic delineation of trees on aerial images
    Haara, A
    Haarala, M
    SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 2002, 17 (06) : 556 - 565
  • [9] Semi-automatic mapping of shallow landslides using free Sentinel-2 images and Google Earth Engine
    Notti, Davide
    Cignetti, Martina
    Godone, Danilo
    Giordan, Daniele
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2023, 23 (07) : 2625 - 2648
  • [10] Automation of Surface Karst Assessment Using Sentinel-2 Satellite Imagery
    Drobinina, E. V.
    COSMIC RESEARCH, 2023, 61 (SUPPL 1) : S173 - S181