Polynomial rings over nil rings need not be nil

被引:97
|
作者
Smoktunowicz, A [1 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00950 Warsaw, Poland
关键词
D O I
10.1006/jabr.2000.8451
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a nil algebra over a countable field, the polynomial ring over which is not nil. This answers a question of Amitsur. (C) 2000 Academic Press.
引用
收藏
页码:427 / 436
页数:10
相关论文
共 50 条
  • [21] Nil-quasipolar rings
    Orhan Gurgun
    Sait Halicioglu
    Abdullah Harmanci
    Boletín de la Sociedad Matemática Mexicana, 2014, 20 (1) : 29 - 38
  • [22] Nil polynomials of prime rings
    Yeh, CT
    Chuang, CL
    JOURNAL OF ALGEBRA, 1996, 186 (03) : 781 - 792
  • [23] Nil-quasipolar rings
    Gurgun, Orhan
    Halicioglu, Sait
    Harmanci, Abdullah
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2014, 20 (01): : 29 - 38
  • [24] On Nil-semicommutative Rings
    Chen, Weixing
    THAI JOURNAL OF MATHEMATICS, 2011, 9 (01): : 39 - 47
  • [25] On nil clean group rings
    Cui, Jian
    Li, Yuanlin
    Wang, Haobai
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (02) : 790 - 796
  • [26] ON RINGS WITH NIL COMMUTATOR IDEAL
    ABUKHUZAM, H
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1981, 23 (02) : 307 - 311
  • [27] NIL PI-RINGS
    AMITSUR, SA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 2 (04) : 538 - 540
  • [28] Nil Clean Graphs of Rings
    Basnet, Dhiren Kumar
    Bhattacharyya, Jayanta
    ALGEBRA COLLOQUIUM, 2017, 24 (03) : 481 - 492
  • [29] NIL CLEAN INDEX OF RINGS
    Basnet, Dhiren Kumar
    Bhattacharyya, Jayanta
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2014, 15 : 145 - 156
  • [30] Ideally nil clean rings
    Gorman, Alexi Block
    Diesl, Alexander
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (11) : 4788 - 4799