Nil-quasipolar rings

被引:0
|
作者
Gurgun, Orhan [1 ]
Halicioglu, Sait [1 ]
Harmanci, Abdullah [2 ]
机构
[1] Ankara Univ, Dept Math, Ankara, Turkey
[2] Hacettepe Univ, Dept Maths, Ankara, Turkey
来源
关键词
Nil-quasipolar matrix; Quasipolar ring; Strongly nil-clean ring; Matrix ring; Characteristic polynomial;
D O I
10.1007/s40590-014-0005-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an arbitrary ring. An element a is an element of R is nil-quasipolar if there exists p(2) = p is an element of comm(2)(a) such that a + p is an element of Nil(R); R is called nil-quasipolar in case each of its elements is nil-quasipolar. In this paper, we study nil-quasipolar rings over commutative local rings. We determine the conditions under which a single 2x2 matrix over a commutative local ring is nil-quasipolar. It is shown that A is an element of M-2(R) is nil-quasipolar if and only if A is an element of Nil(M-2(R)) or A + I-2 is an element of Nil (M-2(R)) or the characteristic polynomial chi(A) has a root in Nil(R) and a root in -1 + Nil(R). Wegive some equivalent characterizations of nil-quasipolar rings through the endomorphism ring of a module. Among others we prove that every nil-quasipolar ring has stable range one.
引用
收藏
页码:29 / 38
页数:10
相关论文
共 50 条
  • [1] Nil-quasipolar rings
    Orhan Gurgun
    Sait Halicioglu
    Abdullah Harmanci
    Boletín de la Sociedad Matemática Mexicana, 2014, 20 (1) : 29 - 38
  • [2] On Quasipolar Rings
    Ying, Zhiling
    Chen, Jianlong
    ALGEBRA COLLOQUIUM, 2012, 19 (04) : 683 - 692
  • [3] A CLASS OF QUASIPOLAR RINGS
    Cui, Jian
    Chen, Jianlong
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (12) : 4471 - 4482
  • [4] Extensions of quasipolar rings
    Gurgun, Orhan
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (01) : 15 - 26
  • [5] CHARACTERIZATIONS OF QUASIPOLAR RINGS
    Cui, Jian
    Chen, Jianlong
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (09) : 3207 - 3217
  • [6] On strongly quasipolar rings
    Kose, Handan
    Ungor, Burcu
    Harmanci, Abdullah
    FILOMAT, 2024, 38 (25) : 8877 - 8891
  • [7] A GENERALIZATION OF J - QUASIPOLAR RINGS
    Calci, T. P.
    Halicioglu, S.
    Harmanci, A.
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (01) : 155 - 165
  • [8] QUASIPOLAR MATRIX RINGS OVER LOCAL RINGS
    Cui, Jian
    Yin, Xiaobin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (03) : 813 - 822
  • [9] QUASIPOLAR TRIANGULAR MATRIX RINGS OVER LOCAL RINGS
    Cui, Jian
    Chen, Jianlong
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (02) : 784 - 794
  • [10] QUASIPOLAR PROPERTY OF GENERALIZED MATRIX RINGS
    Huang, Qinghe
    Tang, Gaohua
    Zhou, Yiqiang
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (09) : 3883 - 3894