共 50 条
Nil-quasipolar rings
被引:0
|作者:
Gurgun, Orhan
[1
]
Halicioglu, Sait
[1
]
Harmanci, Abdullah
[2
]
机构:
[1] Ankara Univ, Dept Math, Ankara, Turkey
[2] Hacettepe Univ, Dept Maths, Ankara, Turkey
来源:
关键词:
Nil-quasipolar matrix;
Quasipolar ring;
Strongly nil-clean ring;
Matrix ring;
Characteristic polynomial;
D O I:
10.1007/s40590-014-0005-y
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let R be an arbitrary ring. An element a is an element of R is nil-quasipolar if there exists p(2) = p is an element of comm(2)(a) such that a + p is an element of Nil(R); R is called nil-quasipolar in case each of its elements is nil-quasipolar. In this paper, we study nil-quasipolar rings over commutative local rings. We determine the conditions under which a single 2x2 matrix over a commutative local ring is nil-quasipolar. It is shown that A is an element of M-2(R) is nil-quasipolar if and only if A is an element of Nil(M-2(R)) or A + I-2 is an element of Nil (M-2(R)) or the characteristic polynomial chi(A) has a root in Nil(R) and a root in -1 + Nil(R). Wegive some equivalent characterizations of nil-quasipolar rings through the endomorphism ring of a module. Among others we prove that every nil-quasipolar ring has stable range one.
引用
收藏
页码:29 / 38
页数:10
相关论文