Tensor-Product Preconditioners for a Space-Time Discontinuous Galerkin Method

被引:0
|
作者
Diosady, Laslo T. [1 ]
Murman, Scott M. [1 ]
机构
[1] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
关键词
Discontinuous Galerkin Methods; Space-Time Formulations; Spectral Element Methods; NAVIER-STOKES EQUATIONS;
D O I
10.1063/1.4897889
中图分类号
O59 [应用物理学];
学科分类号
摘要
A space-time discontinuous Galerkin spectral element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is presented. A diagonalized alternating direction implicit preconditioner is extended to a space-time formulation using entropy variables. The effectiveness of this technique is demonstrated for the direct numerical simulation of turbulent flow in a channel.
引用
收藏
页码:946 / 949
页数:4
相关论文
共 50 条
  • [21] A SPACE-TIME TREFFTZ DISCONTINUOUS GALERKIN METHOD FOR THE LINEAR SCHRODINGER EQUATION
    GOMEZ, S. E. R. G. I. O.
    MOIOLA, A. N. D. R. E. A.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) : 688 - 714
  • [22] SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR MAXWELL EQUATIONS IN DISPERSIVE MEDIA
    汪波
    谢资清
    张智民
    [J]. Acta Mathematica Scientia, 2014, 34 (05) : 1357 - 1376
  • [23] SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR MAXWELL EQUATIONS IN DISPERSIVE MEDIA
    Wang, Bo
    Xie, Ziqing
    Zhang, Zhimin
    [J]. ACTA MATHEMATICA SCIENTIA, 2014, 34 (05) : 1357 - 1376
  • [24] A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation
    Shukla, Poorvi
    van der Vegt, J. J. W.
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (03) : 904 - 944
  • [25] A splitting mixed space-time discontinuous Galerkin method for parabolic problems
    He, Siriguleng
    Li, Hong
    Liu, Yang
    Fang, Zhichao
    Yang, Jingbo
    Jia, Xianbiao
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, 2012, 31 : 1050 - 1059
  • [26] A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC SYSTEMS
    Zhang, Tie
    Liu, Jingna
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (04) : 665 - 678
  • [27] A SPACE-TIME DISCONTINUOUS GALERKIN TREFFTZ METHOD FOR TIME DEPENDENT MAXWELL'S EQUATIONS
    Egger, Herbert
    Kretzschmar, Fritz
    Schnepp, Sascha M.
    Weiland, Thomas
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05): : B689 - B711
  • [28] Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations
    He, Siriguleng
    Li, Hong
    Liu, Yang
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (04) : 825 - 836
  • [29] Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations
    Siriguleng He
    Hong Li
    Yang Liu
    [J]. Frontiers of Mathematics in China, 2013, 8 : 825 - 836
  • [30] A space-time finite element method for the nonlinear Schrodinger equation: The discontinuous Galerkin method
    Karakashian, O
    Makridakis, C
    [J]. MATHEMATICS OF COMPUTATION, 1998, 67 (222) : 479 - 499