Predicting hydrogen storage in MOFs via machine learning

被引:71
|
作者
Ahmed, Alauddin [1 ]
Siegel, Donald J. [1 ,2 ,3 ,4 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Mat Sci & Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Appl Phys Program, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Energy Inst, Ann Arbor, MI 48109 USA
来源
PATTERNS | 2021年 / 2卷 / 07期
关键词
METAL-ORGANIC FRAMEWORKS; HIGH DELIVERABLE CAPACITY; IN-SILICO DESIGN; COORDINATION POLYMERS; MOLECULAR SIMULATION; COMPUTATION-READY; METHANE STORAGE; MONTE-CARLO; ADSORPTION; SITES;
D O I
10.1016/j.patter.2021.100291
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The H-2 capacities of a diverse set of 918,734 metal-organic frameworks (MOFs) sourced from 19 databases is predicted via machine learning (ML). Using only 7 structural features as input, ML identifies 8,282 MOFs with the potential to exceed the capacities of state-of-the-art materials. The identified MOFs are predominantly hypothetical compounds having low densities (<0.31 g cm(-3)) in combination with high surface areas (>5,300 m(2) g(-1)), void fractions (similar to 0.90), and pore volumes (>3.3 cm(3) g(-1)). The relative importance of the input features are characterized, and dependencies on the ML algorithm and training set size are quantified. The most important features for predicting H-2 uptake are pore volume (for gravimetric capacity) and void fraction (for volumetric capacity). The ML models are available on the web, allowing for rapid and accurate predictions of the hydrogen capacities of MOFs from limited structural data; the simplest models require only a single crystallographic feature.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Predicting binding energies of astrochemically relevant molecules via machine learning
    Villadsen, T.
    Ligterink, N.F.W.
    Andersen, M.
    [J]. Astronomy and Astrophysics, 2022, 666
  • [42] Predicting hydroformylation regioselectivity from literature data via machine learning
    Chen, Shuai
    Pollice, Robert
    [J]. CHEM CATALYSIS, 2024, 4 (09):
  • [43] Predicting functional consequences of SNPs on mRNA translation via machine learning
    Li, Zheyu
    Chen, Liang
    [J]. NUCLEIC ACIDS RESEARCH, 2023, 51 (15) : 7868 - 7881
  • [44] PREDICTING DECLINE IN RESIDUAL RENAL UREA CLEARANCE VIA MACHINE LEARNING
    Berkowitz, Jacob
    Akbilgic, Oguz
    Kalantar-Zadeh, Kamyar
    Streja, Elani
    [J]. AMERICAN JOURNAL OF KIDNEY DISEASES, 2021, 77 (04) : 578 - 578
  • [45] Predicting Antimicrobial Activity of Conjugated Oligoelectrolyte Molecules via Machine Learning
    Tiihonen, Armi
    Cox-Vazquez, Sarah J.
    Liang, Qiaohao
    Ragab, Mohamed
    Ren, Zekun
    Hartono, Noor Titan Putri
    Liu, Zhe
    Sun, Shijing
    Zhou, Cheng
    Incandela, Nathan C.
    Limwongyut, Jakkarin
    Moreland, Alex S.
    Jayavelu, Senthilnath
    Bazan, Guillermo C.
    Buonassisi, Tonio
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (45) : 18917 - 18931
  • [46] Predicting ICU readmission in patients with sepsis via machine learning approaches
    Lin, Yu
    Wu, Jingyi
    Hu, Yonghua
    Kong, Guilan
    [J]. DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 832 - 840
  • [47] Predicting lattice thermal conductivity via machine learning: a mini review
    Luo, Yufeng
    Li, Mengke
    Yuan, Hongmei
    Liu, Huijun
    Fang, Ying
    [J]. NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [48] Prediction of Hydrogen Adsorption and Moduli of Metal-Organic Frameworks (MOFs) Using Machine Learning Strategies
    Borja, Nicole Kate
    Fabros, Christine Joy E.
    Doma Jr, Bonifacio T.
    [J]. ENERGIES, 2024, 17 (04)
  • [49] Predicting the effect of hydrogen enrichment on the flame describing function using machine learning
    Shen, Yazhou
    Morgans, Aimee S.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 79 : 267 - 276
  • [50] DFT and machine learning for predicting hydrogen adsorption energies on rocksalt complex oxides
    Dominguez-Castro, Adrian
    [J]. THEORETICAL CHEMISTRY ACCOUNTS, 2024, 143 (06)