Predicting hydrogen storage in MOFs via machine learning

被引:71
|
作者
Ahmed, Alauddin [1 ]
Siegel, Donald J. [1 ,2 ,3 ,4 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Mat Sci & Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Appl Phys Program, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Energy Inst, Ann Arbor, MI 48109 USA
来源
PATTERNS | 2021年 / 2卷 / 07期
关键词
METAL-ORGANIC FRAMEWORKS; HIGH DELIVERABLE CAPACITY; IN-SILICO DESIGN; COORDINATION POLYMERS; MOLECULAR SIMULATION; COMPUTATION-READY; METHANE STORAGE; MONTE-CARLO; ADSORPTION; SITES;
D O I
10.1016/j.patter.2021.100291
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The H-2 capacities of a diverse set of 918,734 metal-organic frameworks (MOFs) sourced from 19 databases is predicted via machine learning (ML). Using only 7 structural features as input, ML identifies 8,282 MOFs with the potential to exceed the capacities of state-of-the-art materials. The identified MOFs are predominantly hypothetical compounds having low densities (<0.31 g cm(-3)) in combination with high surface areas (>5,300 m(2) g(-1)), void fractions (similar to 0.90), and pore volumes (>3.3 cm(3) g(-1)). The relative importance of the input features are characterized, and dependencies on the ML algorithm and training set size are quantified. The most important features for predicting H-2 uptake are pore volume (for gravimetric capacity) and void fraction (for volumetric capacity). The ML models are available on the web, allowing for rapid and accurate predictions of the hydrogen capacities of MOFs from limited structural data; the simplest models require only a single crystallographic feature.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Solid state hydrogen storage: Decoding the path through machine learning
    Verma, Ashwini
    Wilson, Nikhil
    Joshi, Kavita
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 1518 - 1528
  • [32] Machine learning modelling and optimization for metal hydride hydrogen storage systems
    Kumar, Abhijit
    Tiwari, Saurabh
    Gupta, Nandlal
    Sharma, Pratibha
    [J]. SUSTAINABLE ENERGY & FUELS, 2024, 8 (09) : 2073 - 2086
  • [33] Machine-learning-based prediction of hydrogen adsorption capacity at varied temperatures and pressures for MOFs adsorbents
    Zhang, Xuan
    Zheng, Qing-rong
    He, Hong-zhou
    [J]. JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2022, 138
  • [34] Predicting health effects of food compounds via ensemble machine learning
    Mei, Suyu
    [J]. INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2024, 59 (04): : 2547 - 2557
  • [35] Predicting Momentary Happiness Towards Air Quality via Machine Learning
    Han, Yang
    Li, Victor O. K.
    Lam, Jacqueline C. K.
    Lu, Zhiyi
    [J]. PROCEEDINGS OF THE 2018 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2018 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS (UBICOMP/ISWC'18 ADJUNCT), 2018, : 702 - 705
  • [36] Predicting binding energies of astrochemically relevant molecules via machine learning
    Villadsen, T.
    Ligterink, N. F. W.
    Andersen, M.
    [J]. ASTRONOMY & ASTROPHYSICS, 2022, 666
  • [37] Predicting Stress among Students via Psychometric Assessments and Machine Learning
    Ghosh, Sagnik
    Kirti
    Garg, Ankita
    Singh, Dinesh
    Prasad, Amit
    Bhavsar, Arnav
    Dutt, Varun
    [J]. 17TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2024, 2024, : 662 - 669
  • [38] Predicting the ET(30) parameter of organic solvents via machine learning
    Saini, Vaneet
    Singh, Harsh
    [J]. CHEMICAL PHYSICS LETTERS, 2023, 826
  • [39] Predicting lattice thermal conductivity via machine learning: a mini review
    Yufeng Luo
    Mengke Li
    Hongmei Yuan
    Huijun Liu
    Ying Fang
    [J]. npj Computational Materials, 9
  • [40] Predicting Multiple Domain Queue Waiting Time via Machine Learning
    Loureiro, Carolina
    Pereira, Pedro Jose
    Cortez, Paulo
    Guimaraes, Pedro
    Moreira, Carlos
    Pinho, Andre
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2023, PT I, 2023, 13956 : 404 - 421