Online Continuous Mapping using Gaussian Process Implicit Surfaces

被引:0
|
作者
Lee, Bhoram [1 ]
Zhang, Clark [1 ]
Huang, Zonghao [1 ]
Lee, Daniel D. [2 ]
机构
[1] Univ Penn, Grasp Lab, 3330 Walnut St, Philadelphia, PA 19104 USA
[2] ComellTech, 2 West Loop Rd, New York, NY USA
关键词
REGISTRATION; MAPS;
D O I
10.1109/icra.2019.8794324
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The representation of the environment strongly affects how robots can move and interact with it. This paper presents an online approach for continuous mapping using Gaussian Process Implicit Surfaces (GPISs). Compared with grid-based methods, GPIS better utilizes sparse measurements to represent the world seamlessly. It provides direct access to the signed-distance function (SDF) and its derivatives which are invaluable for other robotic tasks and it incorporates uncertainty in the sensor measurements. Our approach incrementally and efficiently updates GPIS by employing a regressor on observations and a spatial tree structure. The effectiveness of the suggested approach is demonstrated using simulations and real world 2D/3D data.
引用
收藏
页码:6884 / 6890
页数:7
相关论文
共 50 条
  • [31] Online Gaussian Process Regression with Non-Gaussian Likelihood
    Seiferth, David
    Chowdhary, G.
    Muehlegg, M.
    Holzapfel, F.
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 3134 - 3140
  • [32] Active Online Anomaly Detection using Dirichlet Process Mixture Model and Gaussian Process Classification
    Varadarajan, Jagannadan
    Subramanian, Ramanathan
    Ahuja, Narendra
    Moulin, Pierre
    Odobez, Jean-Marc
    2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, : 615 - 623
  • [33] Swift-Mapping: Online Neural Implicit Dense Mapping in Urban Scenes
    Wu, Ke
    Zhang, Kaizhao
    Gao, Mingzhe
    Zhao, Jieru
    Gan, Zhongxue
    Ding, Wenchao
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 6, 2024, : 6048 - 6056
  • [34] Online Stochastic Variational Gaussian Process Mapping for Large-Scale Bathymetric SLAM in Real Time
    Torroba, Ignacio
    Cella, Marco
    Teran, Aldo
    Rolleberg, Niklas
    Folkesson, John
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (06): : 3150 - 3157
  • [35] Object shape estimation and modeling, based on sparse Gaussian process implicit surfaces, combining visual data and tactile exploration
    Gandler, Gabriela Zarzar
    Ek, Carl Henrik
    Bjorkman, Marten
    Stolkin, Rustam
    Bekiroglu, Yasemin
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2020, 126
  • [36] Gaussian process based IAQ distribution mapping using an interactive service robot
    Qian, Kun
    Ma, Xudong
    Dai, Xianzhong
    Fang, Fang
    Zhou, Bo
    JOURNAL OF AMBIENT INTELLIGENCE AND SMART ENVIRONMENTS, 2016, 8 (03) : 359 - 373
  • [37] Three-dimensional Radiation Mapping using Gaussian Process Regression and OctoMap
    Jung J.
    You D.
    Oh J.
    Journal of Institute of Control, Robotics and Systems, 2023, 29 (04) : 320 - 324
  • [38] Mapping of Spatiotemporal Scalar Fields by Mobile Robots using Gaussian Process Regression
    Sears, Thomas M. C.
    Marshall, Joshua A.
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 6651 - 6656
  • [39] Mapping radionuclide concentrations in the UAE using a Gaussian process Machine learning approach
    Khuwaileh, Bassam A.
    Almomani, Belal
    El-Sayed, Samar
    Ajaj, Rahaf
    Akram, Yumna
    ANNALS OF NUCLEAR ENERGY, 2025, 217
  • [40] Online Gaussian Process for Nonstationary Speech Separation
    Hsieh, Hsin-Lung
    Chien, Jen-Tzung
    11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 1-2, 2010, : 394 - 397