Online Continuous Mapping using Gaussian Process Implicit Surfaces

被引:0
|
作者
Lee, Bhoram [1 ]
Zhang, Clark [1 ]
Huang, Zonghao [1 ]
Lee, Daniel D. [2 ]
机构
[1] Univ Penn, Grasp Lab, 3330 Walnut St, Philadelphia, PA 19104 USA
[2] ComellTech, 2 West Loop Rd, New York, NY USA
关键词
REGISTRATION; MAPS;
D O I
10.1109/icra.2019.8794324
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The representation of the environment strongly affects how robots can move and interact with it. This paper presents an online approach for continuous mapping using Gaussian Process Implicit Surfaces (GPISs). Compared with grid-based methods, GPIS better utilizes sparse measurements to represent the world seamlessly. It provides direct access to the signed-distance function (SDF) and its derivatives which are invaluable for other robotic tasks and it incorporates uncertainty in the sensor measurements. Our approach incrementally and efficiently updates GPIS by employing a regressor on observations and a spatial tree structure. The effectiveness of the suggested approach is demonstrated using simulations and real world 2D/3D data.
引用
收藏
页码:6884 / 6890
页数:7
相关论文
共 50 条
  • [21] Visuo-Haptic Grasping of Unknown Objects based on Gaussian Process Implicit Surfaces and Deep Learning
    Ottenhaus, Simon
    Renninghoff, Daniel
    Grimm, Raphael
    Ferreira, Fabio
    Asfour, Tamim
    2019 IEEE-RAS 19TH INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2019, : 402 - 408
  • [22] Online monitoring of nonlinear profiles using a Gaussian process model with heteroscedasticity
    Quevedo, A. Valeria
    Vining, G. Geoffrey
    QUALITY ENGINEERING, 2022, 34 (01) : 58 - 74
  • [23] Ozone forecasting using an online updating Gaussian-process model
    Petelin, Dejan
    Mlakar, Primoz
    Boznar, Marija Zlata
    Grasic, Bostjan
    Kocijan, Jus
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2015, 57 (3-4) : 111 - 122
  • [24] Online Updating for Gaussian Process Learning
    Su, Hongjun
    Zhang, Hong
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 180 - 183
  • [25] Online sparse Gaussian process regression using FITC and PITC approximations
    Bijl, Hildo
    van Wingerden, Jan-Willem
    Schon, Thomas B.
    Verhaegen, Michel
    IFAC PAPERSONLINE, 2015, 48 (28): : 703 - 708
  • [26] Toward Adaptive Benthic Habitat Mapping Using Gaussian Process Classification
    Rigby, Paul
    Pizarro, Oscar
    Williams, Stefan B.
    JOURNAL OF FIELD ROBOTICS, 2010, 27 (06) : 741 - 758
  • [27] Mapping Stellar Surfaces. II. An Interpretable Gaussian Process Model for Light Curves
    Luger, Rodrigo
    Foreman-Mackey, Daniel
    Hedges, Christina
    ASTRONOMICAL JOURNAL, 2021, 162 (03):
  • [28] 6D Pose Estimation for Flexible Production with Small Lot Sizes based on CAD Models using Gaussian Process Implicit Surfaces
    Lin, Jianjie
    Rickert, Markus
    Knoll, Alois
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10572 - 10579
  • [29] Prediction of Abdominal Aortic Aneurysm Growth Using Dynamical Gaussian Process Implicit Surface
    Do, Huan N.
    Ijaz, Ahsan
    Gharahi, Hamidreza
    Zambrano, Byron
    Choi, Jonguen
    Lee, Whal
    Baek, Seungik
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (03) : 609 - 622
  • [30] CONTINUOUS SIMULATION OPTIMIZATION WITH MODEL MISMATCH USING GAUSSIAN PROCESS REGRESSION
    Inanlouganji, Alireza
    Pedrielli, Giulia
    Fainekos, Georgios
    Pokutta, Sebastian
    2018 WINTER SIMULATION CONFERENCE (WSC), 2018, : 2131 - 2142