The Architecture of Talin1 Reveals an Autoinhibition Mechanism

被引:81
|
作者
Dedden, Dirk [1 ]
Schumacher, Stephanie [1 ]
Kelley, Charlotte F. [1 ]
Zacharias, Martin [2 ]
Biertuempfel, Christian [1 ]
Faessler, Reinhard [3 ]
Mizuno, Naoko [1 ]
机构
[1] Max Planck Inst Biochem, Dept Struct Cell Biol, Klopferspitz 18, D-82152 Martinsried, Germany
[2] Tech Univ Munich, Phys Dept T38, James Franck Str 1, D-85748 Garching, Germany
[3] Max Planck Inst Biochem, Dept Mol Med, Klopferspitz 18, D-82152 Martinsried, Germany
基金
欧洲研究理事会;
关键词
INTEGRIN ACTIVATION; FERM DOMAIN; NANOSCALE ARCHITECTURE; VINCULIN ACTIVATION; STRUCTURAL BASIS; BINDING DOMAIN; CRYO-EM; ADHESION; HEAD; SITES;
D O I
10.1016/j.cell.2019.08.034
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Focal adhesions (FAs) are protein machineries essential for cell adhesion, migration, and differentiation. Talin is an integrin-activating and tension-sensing FA component directly connecting integrins in the plasma membrane with the actomyosin cytoskeleton. To understand how talin function is regulated, we determined a cryoelectron microscopy (cryo-EM) structure of full-length talin1 revealing a two-way mode of autoinhibition. The actin-binding rod domains fold into a 15-nm globular arrangement that is interlocked by the integrin-binding FERM head. In turn d domains R9 and R12 shield access of the FERM domain to integrin and the phospholipid PIP2 at the membrane. This mechanism likely ensures synchronous inhibition of integrin, membrane, and cytoskeleton binding. We also demonstrate that compacted talin1 reversibly unfolds to an similar to 60-nm string-like conformation, revealing interaction sites for vinculin and actin. Our data explain how fast switching between active and inactive conformations of talin could regulate FA turnover, a process critical for cell adhesion and signaling.
引用
收藏
页码:120 / +
页数:25
相关论文
共 50 条
  • [1] Talin1 and Rap1 Are Critical for Osteoclast Function
    Zou, Wei
    Izawa, Takashi
    Zhu, Tingting
    Chappel, Jean
    Otero, Karel
    Monkley, Susan J.
    Critchley, David R.
    Petrich, Brian G.
    Morozov, Alexei
    Ginsberg, Mark H.
    Teitelbaum, Steven L.
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2013, 33 (04) : 830 - 844
  • [2] Endothelial cell talin1 is essential for embryonic angiogenesis
    Monkley, Susan J.
    Kostourou, Vassiliki
    Spence, Lorraine
    Petrich, Brian
    Coleman, Stacey
    Ginsberg, Mark H.
    Pritchard, Catrin A.
    Critchley, David R.
    [J]. DEVELOPMENTAL BIOLOGY, 2011, 349 (02) : 494 - 502
  • [3] Regulation of Embryonic Signal on Talin1 in Mouse Endometrium
    Ying Shen
    Aiping Qin
    [J]. Reproductive Sciences, 2019, 26 : 1277 - 1286
  • [4] Talin1 sets the stage for dendritic cell activation
    Clausen, Bjorn E.
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 2020, 217 (08):
  • [5] Regulation of Embryonic Signal on Talin1 in Mouse Endometrium
    Shen, Ying
    Qin, Aiping
    [J]. REPRODUCTIVE SCIENCES, 2019, 26 (09) : 1277 - 1286
  • [6] Talin1 phosphorylation activates β1 integrins: a novel mechanism to promote prostate cancer bone metastasis
    Jin, J-K
    Tien, P-C
    Cheng, C-J
    Song, J. H.
    Huang, C.
    Lin, S-H
    Gallick, G. E.
    [J]. ONCOGENE, 2015, 34 (14) : 1811 - 1821
  • [8] Talin1 phosphorylation activates β1 integrins: a novel mechanism to promote prostate cancer bone metastasis
    J-K Jin
    P-C Tien
    C-J Cheng
    J H Song
    C Huang
    S-H Lin
    G E Gallick
    [J]. Oncogene, 2015, 34 : 1811 - 1821
  • [9] Talin autoinhibition is required for morphogenesis
    Ellis, S. J.
    Goult, B. T.
    Fairchild, M. J.
    Harris, N. J.
    Long, J.
    Schoeck, F.
    Peifer, M.
    Tanentzapf, G.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2013, 24
  • [10] Talin autoinhibition is required for morphogenesis
    Ellis, S. J.
    Goult, B. T.
    Fairchild, M. J.
    Harris, N. J.
    Long, J.
    Schoeck, F.
    Peifer, M.
    Tanentzapf, G.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2013, 24