The Architecture of Talin1 Reveals an Autoinhibition Mechanism

被引:81
|
作者
Dedden, Dirk [1 ]
Schumacher, Stephanie [1 ]
Kelley, Charlotte F. [1 ]
Zacharias, Martin [2 ]
Biertuempfel, Christian [1 ]
Faessler, Reinhard [3 ]
Mizuno, Naoko [1 ]
机构
[1] Max Planck Inst Biochem, Dept Struct Cell Biol, Klopferspitz 18, D-82152 Martinsried, Germany
[2] Tech Univ Munich, Phys Dept T38, James Franck Str 1, D-85748 Garching, Germany
[3] Max Planck Inst Biochem, Dept Mol Med, Klopferspitz 18, D-82152 Martinsried, Germany
基金
欧洲研究理事会;
关键词
INTEGRIN ACTIVATION; FERM DOMAIN; NANOSCALE ARCHITECTURE; VINCULIN ACTIVATION; STRUCTURAL BASIS; BINDING DOMAIN; CRYO-EM; ADHESION; HEAD; SITES;
D O I
10.1016/j.cell.2019.08.034
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Focal adhesions (FAs) are protein machineries essential for cell adhesion, migration, and differentiation. Talin is an integrin-activating and tension-sensing FA component directly connecting integrins in the plasma membrane with the actomyosin cytoskeleton. To understand how talin function is regulated, we determined a cryoelectron microscopy (cryo-EM) structure of full-length talin1 revealing a two-way mode of autoinhibition. The actin-binding rod domains fold into a 15-nm globular arrangement that is interlocked by the integrin-binding FERM head. In turn d domains R9 and R12 shield access of the FERM domain to integrin and the phospholipid PIP2 at the membrane. This mechanism likely ensures synchronous inhibition of integrin, membrane, and cytoskeleton binding. We also demonstrate that compacted talin1 reversibly unfolds to an similar to 60-nm string-like conformation, revealing interaction sites for vinculin and actin. Our data explain how fast switching between active and inactive conformations of talin could regulate FA turnover, a process critical for cell adhesion and signaling.
引用
收藏
页码:120 / +
页数:25
相关论文
共 50 条
  • [41] Contact-Dependent T Cell Activation and T Cell Stopping Require Talin1
    Wernimont, Sarah A.
    Wiemer, Andrew J.
    Bennin, David A.
    Monkley, Susan J.
    Ludwig, Thomas
    Critchley, David R.
    Huttenlocher, Anna
    [J]. JOURNAL OF IMMUNOLOGY, 2011, 187 (12): : 6256 - 6267
  • [42] Talin1 Promotes Tumor Invasion and Metastasis via Focal Adhesion Signaling and Anoikis Resistance
    Sakamoto, Shinichi
    McCann, Richard O.
    Dhir, Rajiv
    Kyprianou, Natasha
    [J]. CANCER RESEARCH, 2010, 70 (05) : 1885 - 1895
  • [43] A 2.1-Å-Resolution Crystal Structure of Unliganded CRM1 Reveals the Mechanism of Autoinhibition
    Saito, Natsumi
    Matsuura, Yoshiyuki
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2013, 425 (02) : 350 - 364
  • [44] Genetic Requirement of talin1 for Proliferation of Cranial Neural Crest Cells during Palate Development
    Ishii, Kana
    Mukherjee, Kusumika
    Okada, Takashi
    Liao, Eric C.
    [J]. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN, 2018, 6 (03)
  • [45] Talin autoinhibition regulates cell behavior and migration in vivo.
    Haage, A. M.
    Goodwin, K.
    Bogutz, A. B.
    Lefebvre, L.
    Plotnikov, S. V.
    Goult, B. T.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2017, 28
  • [46] The conserved C-terminal I/LWEQ module targets Talin1 to focal adhesions
    Franco, Santos J.
    Senetar, Melissa A.
    Simonson, William T. N.
    Huttenlocher, Anna
    McCann, Richard O.
    [J]. CELL MOTILITY AND THE CYTOSKELETON, 2006, 63 (09): : 563 - 581
  • [47] Downregulation of Talin1 promotes hepatocellular carcinoma progression through activation of the ERK1/2 pathway
    Chen, Peijuan
    Lei, Ling
    Wang, Jian
    Zou, Xuejing
    Zhang, Dongyan
    Deng, Ling
    Wu, Dehua
    [J]. CANCER SCIENCE, 2017, 108 (06) : 1157 - 1168
  • [48] Intrasteric inhibition mediates the interaction of the I/LWEQ module proteins Talin1, Talin2, Hip1, and Hip12 with actin
    Senetar, MA
    Foster, SJ
    McCann, RO
    [J]. BIOCHEMISTRY, 2004, 43 (49) : 15418 - 15428
  • [49] Rap1 organizes lymphocyte front-back polarity via RhoA signaling and talin1
    Ueda, Yoshihiro
    Higasa, Koichiro
    Kamioka, Yuji
    Kondo, Naoyuki
    Horitani, Shunsuke
    Ikeda, Yoshiki
    Bergmeier, Wolfgang
    Fukui, Yoshinori
    Kinashi, Tatsuo
    [J]. ISCIENCE, 2023, 26 (08)
  • [50] The architecture of EGFR’s basal complexes reveals autoinhibition mechanisms in dimers and oligomers
    Laura C. Zanetti-Domingues
    Dimitrios Korovesis
    Sarah R. Needham
    Christopher J. Tynan
    Shiori Sagawa
    Selene K. Roberts
    Antonija Kuzmanic
    Elena Ortiz-Zapater
    Purvi Jain
    Rob C. Roovers
    Alireza Lajevardipour
    Paul M. P. van Bergen en Henegouwen
    George Santis
    Andrew H. A. Clayton
    David T. Clarke
    Francesco L. Gervasio
    Yibing Shan
    David E. Shaw
    Daniel J. Rolfe
    Peter J. Parker
    Marisa L. Martin-Fernandez
    [J]. Nature Communications, 9