Deterministic annealing learning of the radial basis function nets for improving the regression ability of RBF network

被引:0
|
作者
Zheng, NN [1 ]
Zhang, ZH [1 ]
Zheng, HB [1 ]
Gang, S [1 ]
机构
[1] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Peoples R China
关键词
radial basis function net; deterministic annealing; Lagrangian multiplier;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the deterministic annealing method for training the center vectors of RBF network is proposed. The method is a soft-competition scheme and derived from optimizing an objective function using the gradient descent method. To some extent, it can overcome the problems that the learning vector quantization algorithms with the winner-take-all scheme and the heuristic procedure have. The emulation experiment is given to validate the algorithm. The experimental results show that, compared the error back-propagating algorithms of the multi-layer perception and the RBF network, it not only enhances learning precision and generalization ability, but also reduces learning time as well.
引用
收藏
页码:601 / 607
页数:7
相关论文
共 50 条
  • [41] Improving the efficiency of counting defects by learning RBF nets with MAD loss
    Rafajlowicz, Ewaryst
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2008, PROCEEDINGS, 2008, 5097 : 146 - 153
  • [42] Fuzzy radial basis function network for fuzzy regression with fuzzy input and fuzzy output
    Nimet Yapıcı Pehlivan
    Ayşen Apaydın
    [J]. Complex & Intelligent Systems, 2016, 2 (1) : 61 - 73
  • [43] Fuzzy radial basis function network for fuzzy regression with fuzzy input and fuzzy output
    Pehlivan, Nimet Yapici
    Apaydin, Aysen
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2016, 2 (01) : 61 - 73
  • [44] Image reconstruction in x-ray tomography using a radial basis function(RBF) neural network
    Roh, YJ
    Cho, HS
    [J]. OPTOMECHATRONIC SYSTEMS II, 2001, 4564 : 35 - 46
  • [45] Research of cooling tower filler based on radial basis function artificial neural network (RBF ANN)
    Zhang, Lixin
    Chen, Jie
    Zhao, Shunan
    Chen, Yongbao
    Song, Huijuan
    Liu, Jingnan
    [J]. ENERGY SCIENCE & ENGINEERING, 2023, 11 (08) : 2885 - 2898
  • [46] Sequential RBF function estimator - Memory regression network
    Chow, CK
    Tsui, HT
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 4815 - 4820
  • [47] Annealing robust radial basis function networks for function approximation with outliers
    Chuang, CC
    Jeng, JT
    Lin, PT
    [J]. NEUROCOMPUTING, 2004, 56 : 123 - 139
  • [48] Radial Basis Function Neural Network Model For Optimizing Thermal Annealing Process Operating Condition
    Qasim, Mehdi
    Al-Dabbagh, Jinan B.
    Abdalla, Ahmed N.
    Yusoff, M. M.
    Hegde, Gurumurthy
    [J]. NANO HYBRIDS, 2013, 4 : 21 - 31
  • [49] Optimum steepest descent higher level learning radial basis function network
    Ganapathy, Kirupa
    Vaidehi, V.
    Chandrasekar, Jesintha B.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (21) : 8064 - 8077
  • [50] A radial basis function network (RBFN) for function approximation
    Lucks, MB
    Oki, N
    [J]. 42ND MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, PROCEEDINGS, VOLS 1 AND 2, 1999, : 1099 - 1101