A diversity preserving selection in multiobjective evolutionary algorithms

被引:11
|
作者
Ahn, Chang Wook [2 ]
Ramakrishna, R. S. [1 ]
机构
[1] Gwangju Inst Sci & Technol, Dept Informat & Commun, Kwangju 500712, South Korea
[2] Sungkyunkwan Univ, Sch Informat & Commun Engn, Suwon 440746, South Korea
关键词
Diversity preservation; Elitism; Multiobjective optimization; Multiobjective evolution algorithms; Scaled objectives; Selection; GENETIC ALGORITHM; OPTIMIZATION; STRENGTH;
D O I
10.1007/s10489-008-0140-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an efficient diversity preserving selection (DPS) technique is presented for multiobjective evolutionary algorithms (MEAs). The main goal is to preserve diversity of nondominated solutions in problems with scaled objectives. This is achieved with the help of a mechanism that preserves certain inferior individuals over successive generations with a view to provide long term advantages. The mechanism selects a group (of individuals) that is statistically furthest from the worst group, instead of just concentrating on the best individuals, as in truncation selection. In a way, DPS judiciously combines the diversity preserving mechanism with conventional truncation selection. Experiments demonstrate that DPS significantly improves diversity of nondominated solutions in badly-scaling problems, while at the same time it exhibits acceptable proximity performance. Whilst DPS has certain advantages when it comes to scaling problems, it empirically shows no disadvantages for the problems with non-scaled objectives.
引用
收藏
页码:231 / 248
页数:18
相关论文
共 50 条
  • [41] Considerations in engineering parallel multiobjective evolutionary algorithms
    Van Veldhuizen, DA
    Zydallis, JB
    Lamont, GB
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (02) : 144 - 173
  • [42] Performance Metric Ensemble for Multiobjective Evolutionary Algorithms
    Yen, Gary G.
    He, Zhenan
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (01) : 131 - 144
  • [43] Robust Multiobjective Optimization via Evolutionary Algorithms
    He, Zhenan
    Yen, Gary G.
    Yi, Zhang
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (02) : 316 - 330
  • [44] Global Multiobjective Optimization Using Evolutionary Algorithms
    Thomas Hanne
    [J]. Journal of Heuristics, 2000, 6 : 347 - 360
  • [45] Enhanced distribution and exploration for multiobjective evolutionary algorithms
    Tan, KC
    Yang, YJ
    Goh, CK
    Lee, TH
    [J]. CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 2521 - 2528
  • [46] Multiobjective Groundwater Management Using Evolutionary Algorithms
    Siegfried, Tobias
    Bleuler, Stefan
    Laumanns, Marco
    Zitzler, Eckart
    Kinzelbach, Wolfgang
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (02) : 229 - 242
  • [47] MOLeCS: Using multiobjective evolutionary algorithms for learning
    Mansilla, EBI
    Guiu, JMGI
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2001, 1993 : 696 - 710
  • [48] Search Trajectories Networks of Multiobjective Evolutionary Algorithms
    Lavinas, Yuri
    Aranha, Claus
    Ochoa, Gabriela
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTATION (EVOAPPLICATIONS 2022), 2022, : 223 - 238
  • [49] Hybrid evolutionary algorithms for a multiobjective financial problem
    Mullei, S
    Beling, P
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 3925 - 3930
  • [50] Multiobjective Evolutionary Algorithms for Intradomain Routing Optimization
    Rocha, Miguel
    Sa, Tiago
    Sousa, Pedro
    Cortez, Paulo
    Rio, Miguel
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2272 - 2279