Search Trajectories Networks of Multiobjective Evolutionary Algorithms

被引:7
|
作者
Lavinas, Yuri [1 ]
Aranha, Claus [1 ]
Ochoa, Gabriela [2 ]
机构
[1] Univ Tsukuba, Tsukuba, Ibaraki, Japan
[2] Univ Stirling, Stirling, Scotland
关键词
Algorithm analysis; Search trajectories; Continuous optimization; Visualization; Multi-objective optimization; MOEA/D;
D O I
10.1007/978-3-031-02462-7_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Understanding the search dynamics of multiobjective evolutionary algorithms (MOEAs) is still an open problem. This paper extends a recent network-based tool, search trajectory networks (STNs), to model the behavior of MOEAs. Our approach uses the idea of decomposition, where a multiobjective problem is transformed into several single-objective problems. We show that STNs can be used to model and distinguish the search behavior of two popular multiobjective algorithms, MOEA/D and NSGA-II, using 10 continuous benchmark problems with 2 and 3 objectives. Our findings suggest that we can improve our understanding of MOEAs using STNs for algorithm analysis.
引用
收藏
页码:223 / 238
页数:16
相关论文
共 50 条
  • [1] Multiobjective evolutionary algorithms on complex networks
    Kirley, Michael
    Stewart, Robert
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2007, 4403 : 81 - +
  • [2] Multiobjective Evolutionary Algorithms for Context-Based Search
    Cecchini, Rocio L.
    Lorenzetti, Carlos M.
    Maguitman, Ana G.
    Brignole, Nelida B.
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2010, 61 (06): : 1258 - 1274
  • [3] δ-similar elimination to enhance search performance of multiobjective evolutionary algorithms
    Aguirre, Hernan
    Sato, Masahiko
    Tanaka, Kiyoshi
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2008, E91D (04): : 1206 - 1210
  • [4] Multicast Protection in WDM Networks based on Multiobjective Evolutionary Algorithms
    Lugo, Rodrigo
    Pinto-Roa, Diego P.
    Cuevas, Rolando
    Colbes, Jose
    [J]. 2020 XLVI LATIN AMERICAN COMPUTING CONFERENCE (CLEI 2020), 2021, : 304 - 313
  • [5] HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms
    Lara, Adriana
    Sanchez, Gustavo
    Coello Coello, Carlos A.
    Schuetze, Oliver
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (01) : 112 - 132
  • [6] Evolutionary Algorithms with Segment-Based Search for Multiobjective Optimization Problems
    Li, Miqing
    Yang, Shengxiang
    Li, Ke
    Liu, Xiaohui
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (08) : 1295 - 1313
  • [7] On the convergence of multiobjective evolutionary algorithms
    Hanne, T
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 117 (03) : 553 - 564
  • [8] A tool for multiobjective evolutionary algorithms
    Sag, Tahir
    Cunkas, Mehmet
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2009, 40 (09) : 902 - 912
  • [9] Interactive Multiobjective Evolutionary Algorithms
    Jaszkiewicz, Andrzej
    Branke, Juergen
    [J]. MULTIOBJECTIVE OPTIMIZATION: INTERACTIVE AND EVOLUTIONARY APPROACHES, 2008, 5252 : 179 - +
  • [10] Search Ability of Evolutionary Multiobjective Optimization Algorithms for Multiobjective Fuzzy Genetics-Based Machine Learning
    Ishibuchi, Hisao
    Nakashima, Yusuke
    Nojima, Yusuke
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 1724 - 1729