δ-similar elimination to enhance search performance of multiobjective evolutionary algorithms

被引:0
|
作者
Aguirre, Hernan [1 ]
Sato, Masahiko [1 ]
Tanaka, Kiyoshi [1 ]
机构
[1] Shinshu Univ, Fac Engn, Nagano 3808553, Japan
来源
关键词
multiobjective evolutionary algorithms; delta-similar elimination; controlled elitism; selection;
D O I
10.1093/ietisy/e91-d.4.1206
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose delta-similar elimination to improve the search performance of multiobjective evolutionary algorithms in combinatorial optimization problems. This method eliminates similar individuals in objective space to fairly distribute selection among the different regions of the instantaneous Pareto front. We investigate four eliminating methods analyzing their effects using NSGA-II. In addition, we compare the search performance of NSGA-II enhanced by our method and NSGA-II enhanced by controlled elitism.
引用
收藏
页码:1206 / 1210
页数:5
相关论文
共 50 条
  • [1] Search Trajectories Networks of Multiobjective Evolutionary Algorithms
    Lavinas, Yuri
    Aranha, Claus
    Ochoa, Gabriela
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTATION (EVOAPPLICATIONS 2022), 2022, : 223 - 238
  • [2] Multiobjective Evolutionary Algorithms for Context-Based Search
    Cecchini, Rocio L.
    Lorenzetti, Carlos M.
    Maguitman, Ana G.
    Brignole, Nelida B.
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2010, 61 (06): : 1258 - 1274
  • [3] Performance Metric Ensemble for Multiobjective Evolutionary Algorithms
    Yen, Gary G.
    He, Zhenan
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (01) : 131 - 144
  • [4] Local dominance using polar coordinates to enhance multiobjective evolutionary algorithms
    Sato, H
    Aguirre, HE
    Tanaka, K
    [J]. CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 188 - 195
  • [5] Difficulties in fair performance comparison of multiobjective evolutionary algorithms
    Ishibuchi, Hisao
    Pang, Lie Meng
    Shang, Ke
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 937 - 957
  • [6] An Ensemble Method for Performance Metrics in Multiobjective Evolutionary Algorithms
    He, Zhenan
    Yen, Gary G.
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 1724 - 1729
  • [7] HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms
    Lara, Adriana
    Sanchez, Gustavo
    Coello Coello, Carlos A.
    Schuetze, Oliver
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (01) : 112 - 132
  • [8] Evolutionary Algorithms with Segment-Based Search for Multiobjective Optimization Problems
    Li, Miqing
    Yang, Shengxiang
    Li, Ke
    Liu, Xiaohui
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (08) : 1295 - 1313
  • [9] Effects of δ-similar elimination and controlled elitism in the NSGA-II multiobjective evolutionary algorithm
    Sato, Masahiko
    Aguirre, Hernan E.
    Tanaka, Kiyoshi
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 1149 - +
  • [10] An Improved Performance Metric for Multiobjective Evolutionary Algorithms with User Preferences
    Yu, Guo
    Zheng, Linhua
    Li, Xiaodong
    [J]. 2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 908 - 915