An Improved Performance Metric for Multiobjective Evolutionary Algorithms with User Preferences

被引:0
|
作者
Yu, Guo [1 ]
Zheng, Linhua [1 ,2 ]
Li, Xiaodong [3 ]
机构
[1] Xiangtan Univ, Sch Informat Engn, Xiangtan, Hunan, Peoples R China
[2] Minist Educ, Key Lab Intelligent Comp Informat Proc, Xiangtan, Peoples R China
[3] RMIT Univ, Sch Comp Sci & IT, Melbourne, Vic, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an improved performance metric for multiobjective evolutionary algorithms with user preferences. This metric uses the idea of decomposition to transform the preference information into m+1 points on a constructed preference-based hyperplane, then calculates the Euclidean distances and the angles between the obtained solutions by algorithms and those obtained m+1 points, respectively. By means of these distances and angles, the proposed metric can evaluate effectively both the convergence and diversity of the obtained solution set, with consideration of the preference information. This makes easier and allows meaningful comparisons between different multiobjective evolutionary algorithms using preference information.
引用
收藏
页码:908 / 915
页数:8
相关论文
共 50 条
  • [1] Interactive Incorporation of User Preferences in Multiobjective Evolutionary Algorithms
    Krettek, Johannes
    Braun, Jan
    Hoffmann, Frank
    Bertram, Torsten
    [J]. APPLICATIONS OF SOFT COMPUTING: FROM THEORY TO PRAXIS, 2009, 58 : 379 - 388
  • [2] Performance Metric Ensemble for Multiobjective Evolutionary Algorithms
    Yen, Gary G.
    He, Zhenan
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (01) : 131 - 144
  • [3] Consideration of Partial User Preferences in Evolutionary Multiobjective Optimization
    Branke, Juergen
    [J]. MULTIOBJECTIVE OPTIMIZATION: INTERACTIVE AND EVOLUTIONARY APPROACHES, 2008, 5252 : 157 - 178
  • [4] Multiobjective evolutionary algorithms based on target region preferences
    Li, Longmei
    Wang, Yali
    Trautmann, Heike
    Jing, Ning
    Emmerich, Michael
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2018, 40 : 196 - 215
  • [5] A Distance Metric for Evolutionary Many-Objective Optimization Algorithms Using User-Preferences
    Wickramasinghe, Upali K.
    Li, Xiaodong
    [J]. AI 2009: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5866 : 443 - 453
  • [6] Integrating region preferences in Multiobjective Evolutionary Algorithms Based on Decomposition
    Li, Longmei
    Chen, Hao
    Li, Jun
    Jing, Ning
    Emmerich, Michael
    [J]. PROCEEDINGS OF 2018 TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2018, : 379 - 384
  • [7] Searching for multiobjective preventive maintenance schedules: Combining preferences with evolutionary algorithms
    Quan, Gang
    Greenwood, Garrison W.
    Liu, Donglin
    Hu, Sharon
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 177 (03) : 1969 - 1984
  • [8] Difficulties in fair performance comparison of multiobjective evolutionary algorithms
    Ishibuchi, Hisao
    Pang, Lie Meng
    Shang, Ke
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 937 - 957
  • [9] An Ensemble Method for Performance Metrics in Multiobjective Evolutionary Algorithms
    He, Zhenan
    Yen, Gary G.
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 1724 - 1729
  • [10] A New Performance Metric for User-preference Based Multi-objective Evolutionary Algorithms
    Mohammadi, Asad
    Omidvar, Mohammad Nabi
    Li, Xiaodong
    [J]. 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 2825 - 2832