An Improved Performance Metric for Multiobjective Evolutionary Algorithms with User Preferences

被引:0
|
作者
Yu, Guo [1 ]
Zheng, Linhua [1 ,2 ]
Li, Xiaodong [3 ]
机构
[1] Xiangtan Univ, Sch Informat Engn, Xiangtan, Hunan, Peoples R China
[2] Minist Educ, Key Lab Intelligent Comp Informat Proc, Xiangtan, Peoples R China
[3] RMIT Univ, Sch Comp Sci & IT, Melbourne, Vic, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an improved performance metric for multiobjective evolutionary algorithms with user preferences. This metric uses the idea of decomposition to transform the preference information into m+1 points on a constructed preference-based hyperplane, then calculates the Euclidean distances and the angles between the obtained solutions by algorithms and those obtained m+1 points, respectively. By means of these distances and angles, the proposed metric can evaluate effectively both the convergence and diversity of the obtained solution set, with consideration of the preference information. This makes easier and allows meaningful comparisons between different multiobjective evolutionary algorithms using preference information.
引用
收藏
页码:908 / 915
页数:8
相关论文
共 50 条
  • [31] Performance evaluation of evolutionary multiobjective optimization algorithms for multiobjective fuzzy genetics-based machine learning
    Ishibuchi, Hisao
    Nakashima, Yusuke
    Nojima, Yusuke
    [J]. SOFT COMPUTING, 2011, 15 (12) : 2415 - 2434
  • [32] Gaussian Process-Accelerated Multiobjective Evolutionary Design of Charging Process Considering Multiple User Preferences
    Wang, Bing-Chuan
    Mao, Yang-Yang
    Wang, Yong
    Li, Han-Xiong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (08) : 10123 - 10133
  • [33] An Autoselection Strategy of Multiobjective Evolutionary Algorithms Based on Performance Indicator and Its Application
    Fan, Qinqin
    Zhang, Yilian
    Li, Ning
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (03) : 2422 - 2436
  • [34] Multiobjective Evolutionary Data Mining for Performance Improvement of Evolutionary Multiobjective Optimization
    Nojima, Yusuke
    Tanigaki, Yuki
    Masuyama, Naoki
    Ishibuchi, Hisao
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 745 - 750
  • [35] A diversity preserving selection in multiobjective evolutionary algorithms
    Ahn, Chang Wook
    Ramakrishna, R. S.
    [J]. APPLIED INTELLIGENCE, 2010, 32 (03) : 231 - 248
  • [36] Multiobjective evolutionary algorithms: A survey of the state of the art
    Zhou, Aimin
    Qu, Bo-Yang
    Li, Hui
    Zhao, Shi-Zheng
    Suganthan, Ponnuthurai Nagaratnam
    Zhang, Qingfu
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (01) : 32 - 49
  • [37] Multiobjective Evolutionary Algorithms in Aeronautical and Aerospace Engineering
    Arias-Montano, Alfredo
    Coello Coello, Carlos A.
    Mezura-Montes, Efren
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2012, 16 (05) : 662 - 694
  • [38] Considerations in engineering parallel multiobjective evolutionary algorithms
    Van Veldhuizen, DA
    Zydallis, JB
    Lamont, GB
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (02) : 144 - 173
  • [39] Robust Multiobjective Optimization via Evolutionary Algorithms
    He, Zhenan
    Yen, Gary G.
    Yi, Zhang
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (02) : 316 - 330
  • [40] A diversity preserving selection in multiobjective evolutionary algorithms
    Chang Wook Ahn
    R. S. Ramakrishna
    [J]. Applied Intelligence, 2010, 32 : 231 - 248