Search Trajectories Networks of Multiobjective Evolutionary Algorithms

被引:7
|
作者
Lavinas, Yuri [1 ]
Aranha, Claus [1 ]
Ochoa, Gabriela [2 ]
机构
[1] Univ Tsukuba, Tsukuba, Ibaraki, Japan
[2] Univ Stirling, Stirling, Scotland
关键词
Algorithm analysis; Search trajectories; Continuous optimization; Visualization; Multi-objective optimization; MOEA/D;
D O I
10.1007/978-3-031-02462-7_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Understanding the search dynamics of multiobjective evolutionary algorithms (MOEAs) is still an open problem. This paper extends a recent network-based tool, search trajectory networks (STNs), to model the behavior of MOEAs. Our approach uses the idea of decomposition, where a multiobjective problem is transformed into several single-objective problems. We show that STNs can be used to model and distinguish the search behavior of two popular multiobjective algorithms, MOEA/D and NSGA-II, using 10 continuous benchmark problems with 2 and 3 objectives. Our findings suggest that we can improve our understanding of MOEAs using STNs for algorithm analysis.
引用
收藏
页码:223 / 238
页数:16
相关论文
共 50 条
  • [31] Considerations in engineering parallel multiobjective evolutionary algorithms
    Van Veldhuizen, DA
    Zydallis, JB
    Lamont, GB
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (02) : 144 - 173
  • [32] Performance Metric Ensemble for Multiobjective Evolutionary Algorithms
    Yen, Gary G.
    He, Zhenan
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (01) : 131 - 144
  • [33] Robust Multiobjective Optimization via Evolutionary Algorithms
    He, Zhenan
    Yen, Gary G.
    Yi, Zhang
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (02) : 316 - 330
  • [34] A diversity preserving selection in multiobjective evolutionary algorithms
    Chang Wook Ahn
    R. S. Ramakrishna
    [J]. Applied Intelligence, 2010, 32 : 231 - 248
  • [35] Global Multiobjective Optimization Using Evolutionary Algorithms
    Thomas Hanne
    [J]. Journal of Heuristics, 2000, 6 : 347 - 360
  • [36] Enhanced distribution and exploration for multiobjective evolutionary algorithms
    Tan, KC
    Yang, YJ
    Goh, CK
    Lee, TH
    [J]. CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 2521 - 2528
  • [37] Improving Proximity and Diversity in Multiobjective Evolutionary Algorithms
    Ahn, Chang Wook
    Kim, Yehoon
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (10) : 2879 - 2882
  • [38] Multiobjective Groundwater Management Using Evolutionary Algorithms
    Siegfried, Tobias
    Bleuler, Stefan
    Laumanns, Marco
    Zitzler, Eckart
    Kinzelbach, Wolfgang
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (02) : 229 - 242
  • [39] MOLeCS: Using multiobjective evolutionary algorithms for learning
    Mansilla, EBI
    Guiu, JMGI
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2001, 1993 : 696 - 710
  • [40] Hybrid evolutionary algorithms for a multiobjective financial problem
    Mullei, S
    Beling, P
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 3925 - 3930