Learning Rich Features from RGB-D Images for Object Detection and Segmentation

被引:957
|
作者
Gupta, Saurabh [1 ]
Girshick, Ross [1 ]
Arbelaez, Pablo [2 ]
Malik, Jitendra [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Univ Ios Andes, Bogota, Colombia
来源
关键词
RGB-D perception; object detection; object segmentation;
D O I
10.1007/978-3-319-10584-0_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we study the problem of object detection for RGB-D images using semantically rich image and depth features. We propose a new geocentric embedding for depth images that encodes height above ground and angle with gravity for each pixel in addition to the horizontal disparity. We demonstrate that this geocentric embedding works better than using raw depth images for learning feature representations with convolutional neural networks. Our final object detection system achieves an average precision of 37.3%, which is a 56% relative improvement over existing methods. We then focus on the task of instance segmentation where we label pixels belonging to object instances found by our detector. For this task, we propose a decision forest approach that classifies pixels in the detection window as foreground or background using a family of unary and binary tests that query shape and geocentric pose features. Finally, we use the output from our object detectors in an existing superpixel classification framework for semantic scene segmentation and achieve a 24% relative improvement over current state-of-the-art for the object categories that we study. We believe advances such as those represented in this paper will facilitate the use of perception in fields like robotics.
引用
收藏
页码:345 / 360
页数:16
相关论文
共 50 条
  • [21] Object Segmentation of Indoor Scenes Using Perceptual Organization on RGB-D Images
    Wang, Chaonan
    Xue, Yanbing
    Zhang, Hua
    Xu, Guangping
    Gao, Zan
    2016 8TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS & SIGNAL PROCESSING (WCSP), 2016,
  • [22] Aggregate interactive learning for RGB-D salient object detection
    Wu, Jingyu
    Sun, Fuming
    Xu, Rui
    Meng, Jie
    Wang, Fasheng
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 195
  • [23] Segmentation of Shipping Bags in RGB-D Images
    Vasileva, Elena
    Ivanovski, Zoran
    2022 IEEE 5TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING APPLICATIONS AND SYSTEMS, IPAS, 2022,
  • [24] Efficient Image Segmentation of RGB-D Images
    Fouad, Islam I.
    Rady, Sherine
    Mostafa, G. M. Mostafa
    2017 12TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES), 2017, : 353 - 358
  • [25] Salient object detection for RGB-D images by generative adversarial network
    Zhengyi Liu
    Jiting Tang
    Qian Xiang
    Peng Zhao
    Multimedia Tools and Applications, 2020, 79 : 25403 - 25425
  • [26] Salient object detection for RGB-D images by generative adversarial network
    Liu, Zhengyi
    Tang, Jiting
    Xiang, Qian
    Zhao, Peng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (35-36) : 25403 - 25425
  • [27] Combining Features For RGB-D object Recognition
    Khan, Wasif
    Phaisangittisagul, Ekachai
    Ali, Luqman
    Gansawat, Duangrat
    Kumazawa, Itsuo
    2017 INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2017,
  • [28] Joining geometric and RGB features for RGB-D semantic segmentation
    Zhang, Shaopeng
    Zhong, Min
    Zeng, Gang
    Gan, Rui
    2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2019, 11321
  • [29] RGB-D Object Recognition Using the Knowledge Transferred from Relevant RGB Images
    Gao, Depeng
    Wu, Rui
    Liu, Jiafeng
    Huang, Qingcheng
    Tang, Xianglong
    Liu, Peng
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT VI, 2017, 10639 : 642 - 651
  • [30] Bidirectional feature learning network for RGB-D salient object detection
    Niu, Ye
    Zhou, Sanping
    Dong, Yonghao
    Wang, Le
    Wang, Jinjun
    Zheng, Nanning
    PATTERN RECOGNITION, 2024, 150