RGB-D Object Recognition Using the Knowledge Transferred from Relevant RGB Images

被引:0
|
作者
Gao, Depeng [1 ]
Wu, Rui [1 ]
Liu, Jiafeng [1 ]
Huang, Qingcheng [1 ]
Tang, Xianglong [1 ]
Liu, Peng [1 ]
机构
[1] Harbin Inst Technol, Res Ctr Pattern Recognit & Intelligent Syst, Harbin, Peoples R China
基金
美国国家科学基金会;
关键词
RGB-D object recognition; Transfer learning; Depth images;
D O I
10.1007/978-3-319-70136-3_68
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The availability of depth images provides a new possibility to solve the challenging object recognition problem. However, when there is not enough labeled data, we cannot learn a discriminative classifier even using depth information. To solve this problem, we extend LCCRRD method by kernel trick. First, we construct two RGB classifiers with all labeled RGB images from source and target domain. The significant samples for both classifier are boosted and the non-significant ones are inhibited by exploiting the relationship between two domains. In this process, the knowledge of source RGB classifier can be transferred to target RGB classifier effectively. Then to improve the performance of RGB-D classifier by applying the knowledge from source domain, the predicted results of RGB-D classifier are made consistent to target RGB classifier. Furthermore all the parameters are optimized in a unified objective function. Experiments on four cross-domain dataset pairs shows that our approach is indeed effective and promising.
引用
收藏
页码:642 / 651
页数:10
相关论文
共 50 条
  • [1] Learning Coupled Classifiers with RGB images for RGB-D object recognition
    Li, Xiao
    Fang, Min
    Zhang, Ju-Jie
    Wu, Jinqiao
    [J]. PATTERN RECOGNITION, 2017, 61 : 433 - 446
  • [2] Point-Based Object Recognition in RGB-D Images
    Wilkowski, Artur
    Kornuta, Tomasz
    Kasprzak, Wlodzimierz
    [J]. INTELLIGENT SYSTEMS'2014, VOL 2: TOOLS, ARCHITECTURES, SYSTEMS, APPLICATIONS, 2015, 323 : 593 - 604
  • [3] An Object Recognition Method using RGB-D Sensor
    Maeda, Daisuke
    Morimoto, Masakazu
    [J]. 2013 SECOND IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR 2013), 2013, : 857 - 861
  • [4] Visual Recognition in RGB Images and Videos by Learning from RGB-D Data
    Li, Wen
    Chen, Lin
    Xu, Dong
    Van Gool, Luc
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (08) : 2030 - 2036
  • [5] Domain adaptation from RGB-D to RGB images
    Li, Xiao
    Fang, Min
    Zhang, Ju-Jie
    Wu, Jinqiao
    [J]. SIGNAL PROCESSING, 2017, 131 : 27 - 35
  • [6] RGB-D Object Modelling for Object Recognition and Tracking
    Prankl, Johann
    Aldoma, Aitor
    Svejda, Alexander
    Vincze, Markus
    [J]. 2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 96 - 103
  • [7] Combining Features For RGB-D object Recognition
    Khan, Wasif
    Phaisangittisagul, Ekachai
    Ali, Luqman
    Gansawat, Duangrat
    Kumazawa, Itsuo
    [J]. 2017 INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2017,
  • [8] Perception Subsystem for Object Recognition and Pose Estimation in RGB-D Images
    Kornuta, Tomasz
    Laszkowski, Michal
    [J]. CHALLENGES IN AUTOMATION, ROBOTICS AND MEASUREMENT TECHNIQUES, 2016, 440 : 597 - 607
  • [9] Gesture Recognition of RGB and RGB-D Static Images Using Convolutional Neural Networks
    Khari, Manju
    Garg, Aditya Kumar
    Gonzalez Crespo, Ruben
    Verdu, Elena
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2019, 5 (07): : 22 - 27
  • [10] Object Recognition in Noisy RGB-D Data
    Carlos Rangel, Jose
    Morell, Vicente
    Cazorla, Miguel
    Orts-Escolano, Sergio
    Garcia Rodriguez, Jose
    [J]. BIOINSPIRED COMPUTATION IN ARTIFICIAL SYSTEMS, PT II, 2015, 9108 : 261 - 270