Object Recognition in Noisy RGB-D Data

被引:2
|
作者
Carlos Rangel, Jose [1 ]
Morell, Vicente [1 ]
Cazorla, Miguel [1 ]
Orts-Escolano, Sergio [1 ]
Garcia Rodriguez, Jose [1 ]
机构
[1] Univ Alicante, Inst Comp Res, E-03080 Alicante, Spain
关键词
Growing neural gas; 3D object recognition; Keypoints detection;
D O I
10.1007/978-3-319-18833-1_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The object recognition task on 3D scenes is a growing research field that faces some problems relative to the use of 3D point clouds. In this work, we focus on dealing with noisy clouds through the use of the Growing Neural Gas (GNG) network filtering algorithm. Another challenge is the selection of the right keypoints detection method, that allows to identify a model into a scene cloud. The GNG method is able to represent the input data with a desired resolution while preserving the topology of the input space. Experiments show how the introduction of the GNG method yields better recognitions results than others filtering algorithms when noise is present.
引用
收藏
页码:261 / 270
页数:10
相关论文
共 50 条
  • [1] Object recognition in noisy RGB-D data using GNG
    Carlos Rangel, Jose
    Morell, Vicente
    Cazorla, Miguel
    Orts-Escolano, Sergio
    Garcia-Rodriguez, Jose
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2017, 20 (04) : 1061 - 1076
  • [2] Object recognition in noisy RGB-D data using GNG
    José Carlos Rangel
    Vicente Morell
    Miguel Cazorla
    Sergio Orts-Escolano
    José García-Rodríguez
    [J]. Pattern Analysis and Applications, 2017, 20 : 1061 - 1076
  • [3] Using GNG on 3D Object Recognition in Noisy RGB-D data
    Rangel, Jose Carlos
    Morell, Vicente
    Cazorla, Miguel
    Orts-Escolano, Sergio
    Garcia-Rodriguez, Jose
    [J]. 2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [4] Object Class and Instance Recognition on RGB-D Data
    Seib, Viktor
    Christ-Friedmann, Susanne
    Thierfelder, Susanne
    Paulus, Dietrich
    [J]. SIXTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2013), 2013, 9067
  • [5] A Learned Feature Descriptor for Object Recognition in RGB-D Data
    Blum, Manuel
    Springenberg, Jost Tobias
    Wuelfing, Jan
    Riedmiller, Martin
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 1298 - 1303
  • [6] RGB-D Object Modelling for Object Recognition and Tracking
    Prankl, Johann
    Aldoma, Aitor
    Svejda, Alexander
    Vincze, Markus
    [J]. 2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 96 - 103
  • [7] Combining Features For RGB-D object Recognition
    Khan, Wasif
    Phaisangittisagul, Ekachai
    Ali, Luqman
    Gansawat, Duangrat
    Kumazawa, Itsuo
    [J]. 2017 INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2017,
  • [8] Object recognition and robot grasping technology based on RGB-D data
    Yu, Sheng
    Zhai, Di-Hua
    Wu, Haocun
    Yang, Hongda
    Xia, Yuanqing
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 3869 - 3874
  • [9] CutResize: Improved data augmentation method for RGB-D Object Recognition
    Xu, Xianfa
    Chen, Zhe
    Yin, Fuliang
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (01): : 183 - 190
  • [10] Child Action Recognition in RGB and RGB-D Data
    Turarova, Aizada
    Zhanatkyzy, Aida
    Telisheva, Zhansaule
    Sabyrov, Arman
    Sandygulova, Anara
    [J]. HRI'20: COMPANION OF THE 2020 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION, 2020, : 491 - 492