Cloud Region Segmentation from All Sky Images using Double K-Means Clustering

被引:2
|
作者
Dinc, Semih [1 ]
Russell, Randy [2 ]
Parra, Luis Alberto Cueva [3 ]
机构
[1] EagleView Technol, Bellevue, WA 98004 USA
[2] Auburn Univ, Dept Chem, Montgomery, AL USA
[3] Univ North Georgia, Comp Sci & Informat Syst, Dahlonega, GA USA
基金
美国国家科学基金会;
关键词
Cloud Region Segmentation; All Sky Images; K-means; Image Processing; CLASSIFICATION;
D O I
10.1109/ISM55400.2022.00058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The segmentation of sky images into regions of cloud and clear sky allows atmospheric scientists to determine the fraction of cloud cover and the distribution of cloud without resorting to subjective estimates by a human observer. This is a challenging problem because cloud boundaries and cirroform cloud regions are often semi-transparent and indistinct. In this study, we propose a lightweight, unsupervised methodology to identify cloud regions in ground-based hemispherical sky images. Our method offers a fast and adaptive approach without the necessity of fixed thresholds by utilizing K-means clustering on transformed pixel values. We present the results of our method for two data sets and compare them with three different methods in the literature.
引用
收藏
页码:261 / 262
页数:2
相关论文
共 50 条
  • [41] A parallel clustering algorithm for images using GA and k-means
    Wang, Ze
    Xiao, Shengzhong
    Cai, HuanFu
    Wang, ChunMei
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2011, 14 (06): : 2163 - 2170
  • [42] Segmentation of functional MRI by K-means clustering
    Singh, M
    Patel, P
    Khosla, D
    Kim, T
    1995 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD, VOLS 1-3, 1996, : 1732 - 1736
  • [43] CENTAURUS: A Cloud Service for K-means Clustering
    Golubovic, Nevena
    Gill, Angad
    Krintz, Chandra
    Wolski, Rich
    2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, 2017, : 1135 - 1142
  • [44] Image segmentation by using K-means clustering algorithm in Euclidean and Mahalanobis distance calculation in camouflage images
    Bayram, Erkan
    Nabiyev, Vasif
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [45] Semantic Cardiac Segmentation in Chest CT Images Using K-Means Clustering and the Mathematical Morphology Method
    Rim, Beanbonyka
    Lee, Sungjin
    Lee, Ahyoung
    Gil, Hyo-Wook
    Hong, Min
    SENSORS, 2021, 21 (08)
  • [46] Brain Tumor Segmentation Using Deep Learning and Fuzzy K-Means Clustering for Magnetic Resonance Images
    Pitchai, R.
    Supraja, P.
    Victoria, A. Helen
    Madhavi, M.
    NEURAL PROCESSING LETTERS, 2021, 53 (04) : 2519 - 2532
  • [47] Customer Segmentation for Life Insurance in Iran Using K-means Clustering
    Khamesiana, Farzan
    Khanizadeha, Farbod
    Bahiraieb, Alireza
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 633 - 642
  • [48] Image Segmentation Using Gabor Filter and K-Means Clustering Method
    Premana, Agyztia
    Wijaya, Akhmad Pandhu
    Soeleman, Moch Arief
    2017 INTERNATIONAL SEMINAR ON APPLICATION FOR TECHNOLOGY OF INFORMATION AND COMMUNICATION (ISEMANTIC), 2017, : 95 - 99
  • [49] A single plant segmentation method of maize point cloud based on Euclidean clustering and K-means clustering
    Miao, Yanlong
    Li, Shuai
    Wang, Liuyang
    Li, Han
    Qiu, Ruicheng
    Zhang, Man
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 210
  • [50] K-means Clustering Using R A Case Study of Market Segmentation
    Phan Duy Hung
    Nguyen Duc Ngoc
    Tran Duc Hanh
    PROCEEDINGS OF THE 2019 5TH INTERNATIONAL CONFERENCE ON E-BUSINESS AND APPLICATIONS (ICEBA 2019), 2019, : 100 - 104