Cloud Region Segmentation from All Sky Images using Double K-Means Clustering

被引:2
|
作者
Dinc, Semih [1 ]
Russell, Randy [2 ]
Parra, Luis Alberto Cueva [3 ]
机构
[1] EagleView Technol, Bellevue, WA 98004 USA
[2] Auburn Univ, Dept Chem, Montgomery, AL USA
[3] Univ North Georgia, Comp Sci & Informat Syst, Dahlonega, GA USA
基金
美国国家科学基金会;
关键词
Cloud Region Segmentation; All Sky Images; K-means; Image Processing; CLASSIFICATION;
D O I
10.1109/ISM55400.2022.00058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The segmentation of sky images into regions of cloud and clear sky allows atmospheric scientists to determine the fraction of cloud cover and the distribution of cloud without resorting to subjective estimates by a human observer. This is a challenging problem because cloud boundaries and cirroform cloud regions are often semi-transparent and indistinct. In this study, we propose a lightweight, unsupervised methodology to identify cloud regions in ground-based hemispherical sky images. Our method offers a fast and adaptive approach without the necessity of fixed thresholds by utilizing K-means clustering on transformed pixel values. We present the results of our method for two data sets and compare them with three different methods in the literature.
引用
收藏
页码:261 / 262
页数:2
相关论文
共 50 条
  • [31] Evaluation of segmentation in magnetic resonance images using k-means and fuzzy c-means clustering algorithms
    Primerjava razclenjevanja magnetnoresonancnih slik z uporabo postopkov k-tih in mehkih c-tih povprecij rojenja
    Finkšt, T. (tomaz.finkst@fs.uni-lj.si), 1600, Electrotechnical Society of Slovenia (79):
  • [32] Evaluation of Segmentation in Magnetic Resonance Images Using k-Means and Fuzzy c-Means Clustering Algorithms
    Finkst, Tomaz
    ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2012, 79 (03): : 129 - 134
  • [33] K-means Clustering Approach for Segmentation of Corpus Callosum from Brain Magnetic Resonance Images
    Bhalerao, Gaurav Vivek
    Sampathila, Niranjana
    2014 INTERNATIONAL CONFERENCE ON CIRCUITS, COMMUNICATION, CONTROL AND COMPUTING (I4C), 2014, : 434 - 437
  • [34] Comparison of k-means related clustering methods for Nuclear Medicine images segmentation
    Borys, Damian
    Bzowski, Pawel
    Danch-Wierzchowska, Marta
    Psiuk-Maksymowicz, Krzysztof
    NINTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2016), 2017, 10341
  • [35] SEGMENTATION OF LUNG CANCER IMAGES WITH THRESHOLD TECHNIQUE COMPARED WITH K-MEANS CLUSTERING
    Kumar, T. Pavan
    Baskar, Radhika
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (03) : 5714 - 5722
  • [36] Segmentation of dermatoscopic images by frequency domain filtering and k-means clustering algorithms
    Rajab, Maher I.
    SKIN RESEARCH AND TECHNOLOGY, 2011, 17 (04) : 469 - 478
  • [37] Image Segmentation using K-means Clustering Algorithm and Subtractive Clustering Algorithm
    Dhanachandra, Nameirakpam
    Manglem, Khumanthem
    Chanu, Yambem Jina
    ELEVENTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2015/INDIA ELEVENTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2015/NDIA ELEVENTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2015, 2015, 54 : 764 - 771
  • [38] Segmentation of functional MRI by K-means clustering
    Singh, M
    Patel, P
    Khosla, D
    Kim, T
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1996, 43 (03) : 2030 - 2036
  • [39] Telecom Customer Segmentation with K-means Clustering
    Luo Ye
    Cai Qiu-ru
    Xi Hai-xu
    Liu Yi-jun
    Yu Zhi-min
    PROCEEDINGS OF 2012 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION, VOLS I-VI, 2012, : 648 - 651
  • [40] Unsupervised segmentation of color images based on k-means clustering in the chromaticity plane
    Lucchese, L
    Mitra, SK
    IEEE WORKSHOP ON CONTENT-BASED ACCESS OF IMAGE AND VIDEO LIBRARIES (CBAIVL'99) - PROCEEDINGS, 1999, : 74 - 78