A unified allosteric/torpedo mechanism for transcriptional termination on human protein-coding genes

被引:74
|
作者
Eaton, Joshua D. [1 ]
Francis, Laura [1 ]
Davidson, Lee [1 ]
West, Steven [1 ]
机构
[1] Univ Exeter, Living Syst Inst, Exeter EX4 4QD, Devon, England
基金
英国生物技术与生命科学研究理事会; 英国惠康基金; 英国医学研究理事会;
关键词
XRN2; transcriptional termination; CPSF73; polyadenylation signal; RNA polymerase II; PP1; antisense oligo; RNA-POLYMERASE-II; EXONUCLEASE XRN2; CLEAVAGE; POLYADENYLATION; DEPLETION; REVEALS; EXORIBONUCLEASE; DEGRADATION; DOWNSTREAM; COMPLEX;
D O I
10.1101/gad.332833.119
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The allosteric and torpedo models have been used for 30 yr to explain how transcription terminates on protein-coding genes. The former invokes termination via conformational changes in the transcription complex and the latter proposes that degradation of the downstream product of poly(A) signal (PAS) processing is important. Here, we describe a single mechanism incorporating features of both models. We show that termination is completely abolished by rapid elimination of CPSF73, which causes very extensive transcriptional readthrough genome-wide. This is because CPSF73 functions upstream of modifications to the elongation complex and provides an entry site for the XRN2 torpedo. Rapid depletion of XRN2 enriches these events that we show are underpinned by protein phosphatase 1 (PP1) activity, the inhibition of which extends readthrough in the absence of XRN2. Our results suggest a combined allosteric/torpedo mechanism, in which PP1-dependent slowing down of polymerases over termination regions facilitates their pursuit/capture by XRN2 following PAS processing.
引用
收藏
页码:132 / 145
页数:14
相关论文
共 50 条
  • [41] Computational prediction of eukaryotic protein-coding genes
    Michael Q. Zhang
    [J]. Nature Reviews Genetics, 2002, 3 : 698 - 709
  • [42] Ablating all mitochondrial protein-coding genes
    Xin Lou
    Bin Shen
    [J]. Nature Biomedical Engineering, 2023, 7 : 609 - 611
  • [43] Neurodevelopmental Disorders: Beyond protein-coding genes
    Lozano-Urena, Anna
    Ferron, Sacri R.
    [J]. ELIFE, 2019, 8
  • [44] Identifying protein-coding genes in genomic sequences
    Harrow, Jennifer
    Nagy, Alinda
    Reymond, Alexandre
    Alioto, Tyler
    Patthy, Laszlo
    Antonarakis, Stylianos E.
    Guigo, Roderic
    [J]. GENOME BIOLOGY, 2009, 10 (01): : 201
  • [45] Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes
    Wang, JH
    Smith, PJ
    Krainer, AR
    Zhang, MQ
    [J]. NUCLEIC ACIDS RESEARCH, 2005, 33 (16) : 5053 - 5062
  • [46] Defective XRN3-mediated transcription termination in Arabidopsis affects the expression of protein-coding genes
    Krzyszton, Michal
    Zakrzewska-Placzek, Monika
    Kwasnik, Aleksandra
    Dojer, Norbert
    Karlowski, Wojciech
    Kufel, Joanna
    [J]. PLANT JOURNAL, 2018, 93 (06): : 1017 - 1031
  • [47] Evolutionary hallmarks of the human proteome: chasing the age and coregulation of protein-coding genes
    Katia de Paiva Lopes
    Francisco José Campos-Laborie
    Ricardo Assunção Vialle
    José Miguel Ortega
    Javier De Las Rivas
    [J]. BMC Genomics, 17
  • [48] Evolutionary hallmarks of the human proteome: chasing the age and coregulation of protein-coding genes
    de Paiva Lopes, Katia
    Jose Campos-Laborie, Francisco
    Vialle, Ricardo Assuncao
    Ortega, Jose Miguel
    De Las Rivas, Javier
    [J]. BMC GENOMICS, 2016, 17
  • [49] Identical sequence patterns in the ends of exons and introns of human protein-coding genes
    Tavares, Raphael
    Renaud, Gabriel
    Lopes Oliveira, Paulo Sergio
    Ferreira, Carlos G.
    Dias-Neto, Emmanuel
    Passetti, Fabio
    [J]. COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2012, 36 : 55 - 61
  • [50] Dataset for regulation between lncRNAs and their nearby protein-coding genes in human cancers
    Liu, Zhi
    Dai, Juncheng
    Shen, Hongbing
    [J]. DATA IN BRIEF, 2018, 19 : 1902 - 1906