Evolutionary hallmarks of the human proteome: chasing the age and coregulation of protein-coding genes

被引:3
|
作者
de Paiva Lopes, Katia [1 ,2 ]
Jose Campos-Laborie, Francisco [1 ]
Vialle, Ricardo Assuncao [2 ]
Ortega, Jose Miguel [2 ]
De Las Rivas, Javier [1 ]
机构
[1] CSIC, CSIC USAL IBSAL, CiC IBMCC, Bioinformat & Funct Genom Grp,Canc Res Ctr, Salamanca, Spain
[2] Univ Fed Minas Gerais, ICB, Dept Bioquim & Imunol, Belo Horizonte, MG, Brazil
来源
BMC GENOMICS | 2016年 / 17卷
关键词
Human protein evolution; Human gene evolution; Transcriptomics; RNA-seq; Tissue transcriptomics; Protein families; Gene coexpression; Gene house-keeping; Gene tissue-enriched; GENOME EVOLUTION; PATTERNS; SUPPORT; CLASSIFICATION; TRANSCRIPTOME; INTEGRATION; ORTHOLOGY; EMERGENCE; DISCOVERY; NETWORKS;
D O I
10.1186/s12864-016-3062-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The development of large-scale technologies for quantitative transcriptomics has enabled comprehensive analysis of the gene expression profiles in complete genomes. RNA-Seq allows the measurement of gene expression levels in a manner far more precise and global than previous methods. Studies using this technology are altering our view about the extent and complexity of the eukaryotic transcriptomes. In this respect, multiple efforts have been done to determine and analyse the gene expression patterns of human cell types in different conditions, either in normal or pathological states. However, until recently, little has been reported about the evolutionary marks present in human protein-coding genes, particularly from the combined perspective of gene expression and protein evolution. Results: We present a combined analysis of human protein-coding gene expression profiling and time-scale ancestry mapping, that places the genes in taxonomy clades and reveals eight evolutionary major steps ("hallmarks"), that include clusters of functionally coherent proteins. The human expressed genes are analysed using a RNA-Seq dataset of 116 samples from 32 tissues. The evolutionary analysis of the human proteins is performed combining the information from: (i) a database of orthologous proteins (OMA), (ii) the taxonomy mapping of genes to lineage clades (from NCBI Taxonomy) and (iii) the evolution time-scale mapping provided by TimeTree (Timescale of Life). The human protein-coding genes are also placed in a relational context based in the construction of a robust gene coexpression network, that reveals tighter links between age-related protein-coding genes and finds functionally coherent gene modules. Conclusions: Understanding the relational landscape of the human protein-coding genes is essential for interpreting the functional elements and modules of our active genome. Moreover, decoding the evolutionary history of the human genes can provide very valuable information to reveal or uncover their origin and function.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Evolutionary hallmarks of the human proteome: chasing the age and coregulation of protein-coding genes
    Katia de Paiva Lopes
    Francisco José Campos-Laborie
    Ricardo Assunção Vialle
    José Miguel Ortega
    Javier De Las Rivas
    [J]. BMC Genomics, 17
  • [2] Evolutionary diversification of protein-coding genes of hantaviruses
    Hughes, AL
    Friedman, R
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (10) : 1558 - 1568
  • [3] Distinguishing protein-coding and noncoding genes in the human genome
    Clamp, Michele
    Fry, Ben
    Kamal, Mike
    Xie, Xiaohui
    Cuff, James
    Lin, Michael F.
    Kellis, Manolis
    Lindblad-Toh, Kerstin
    Lander, Eric S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (49) : 19428 - 19433
  • [4] De Novo Origin of Human Protein-Coding Genes
    Wu, Dong-Dong
    Irwin, David M.
    Zhang, Ya-Ping
    [J]. PLOS GENETICS, 2011, 7 (11)
  • [5] Natural selection on protein-coding genes in the human genome
    Carlos D. Bustamante
    Adi Fledel-Alon
    Scott Williamson
    Rasmus Nielsen
    Melissa Todd Hubisz
    Stephen Glanowski
    David M. Tanenbaum
    Thomas J. White
    John J. Sninsky
    Ryan D. Hernandez
    Daniel Civello
    Mark D. Adams
    Michele Cargill
    Andrew G. Clark
    [J]. Nature, 2005, 437 : 1153 - 1157
  • [6] Natural selection on protein-coding genes in the human genome
    Bustamante, CD
    Fledel-Alon, A
    Williamson, S
    Nielsen, R
    Hubisz, MT
    Glanowski, S
    Tanenbaum, DM
    White, TJ
    Sninsky, JJ
    Hernandez, RD
    Civello, D
    Adams, MD
    Cargill, M
    Clark, AG
    [J]. NATURE, 2005, 437 (7062) : 1153 - 1157
  • [7] Finding Protein-Coding Genes through Human Polymorphisms
    Wijaya, Edward
    Frith, Martin C.
    Horton, Paul
    Asai, Kiyoshi
    [J]. PLOS ONE, 2013, 8 (01):
  • [8] AMINO-ACID COMPOSITION AND THE EVOLUTIONARY RATES OF PROTEIN-CODING GENES
    GRAUR, D
    [J]. JOURNAL OF MOLECULAR EVOLUTION, 1985, 22 (01) : 53 - 62
  • [9] An atlas of the protein-coding genes in the human, pig, and mouse brain
    Sjostedt, Evelina
    Zhong, Wen
    Fagerberg, Linn
    Karlsson, Max
    Mitsios, Nicholas
    Adori, Csaba
    Oksvold, Per
    Edfors, Fredrik
    Limiszewska, Agnieszka
    Hikmet, Feria
    Huang, Jinrong
    Du, Yutao
    Lin, Lin
    Dong, Zhanying
    Yang, Ling
    Liu, Xin
    Jiang, Hui
    Xu, Xun
    Wang, Jian
    Yang, Huanming
    Bolund, Lars
    Mardinoglu, Adil
    Zhang, Cheng
    von Feilitzen, Kalle
    Lindskog, Cecilia
    Ponten, Fredrik
    Luo, Yonglun
    Hokfelt, Tomas
    Uhlen, Mathias
    Mulder, Jan
    [J]. SCIENCE, 2020, 367 (6482) : 1090 - +
  • [10] Human protein-coding genes and gene feature statistics in 2019
    Piovesan, Allison
    Antonaros, Francesca
    Vitale, Lorenza
    Strippoli, Pierluigi
    Pelleri, Maria Chiara
    Caracausi, Maria
    [J]. BMC RESEARCH NOTES, 2019, 12 (1)