Identification of induction machines using artificial neural networks

被引:1
|
作者
Martinez, LZ [1 ]
Martinez, AZ [1 ]
机构
[1] Univ La Rioja, Dept Ingn Elect, Logrono 26004, Spain
关键词
D O I
10.1109/ISIE.1997.648924
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper shows an analysis of the use of Artificial Neural Networks (ANN's) for induction machines identification, in order to use afterwards for the control Df induction machines. A multilayer perceptron neural network with a hidden layer is trained with the Back-Propagation Algorithm to identify the induction motor (IM) for getting IM neural model. Neural network training process is analyzed with different scenarios (different number of hidden layer neurons, different learning rates and different sampling rates) in order to get neural networks parameters for practical implementations. Finally, the results of the trained neural networks for different Load Torque are showed.
引用
收藏
页码:1259 / 1264
页数:6
相关论文
共 50 条
  • [31] Identification of dolphin signature whistles using artificial neural networks
    Narayan, S
    [J]. APPLICATIONS AND SCIENCE OF ARTIFICIAL NEURAL NETWORKS III, 1997, 3077 : 319 - 322
  • [32] Classification and identification of mosquito species using artificial neural networks
    Banerjee, Amit Kumar
    Kiran, K.
    Murty, U. S. N.
    Venkateswarlu, Ch.
    [J]. COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2008, 32 (06) : 442 - 447
  • [33] Identification of spectral lines of elements using artificial neural networks
    Saritha, M.
    Nampoori, V. P. N.
    [J]. MICROCHEMICAL JOURNAL, 2009, 91 (02) : 170 - 175
  • [34] On-Board Fuel Identification using Artificial Neural Networks
    Mocanu, Florin
    [J]. SAE INTERNATIONAL JOURNAL OF ENGINES, 2014, 7 (02) : 937 - 946
  • [35] Online identification of heat dissipaters using artificial neural networks
    Lalot, S
    Lecoeuche, S
    [J]. STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2001, 47 (08): : 411 - 416
  • [36] Detection and identification of seismic signals using artificial neural networks
    Roy, F
    [J]. CURRENT SCIENCE, 1998, 74 (01): : 47 - 54
  • [37] Modeling and identification of fertility maps using artificial neural networks
    Ulson, JAC
    da Silva, IN
    Benez, SH
    Boas, RLV
    [J]. SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 2673 - 2678
  • [38] Flaws identification using an approximation function and artificial neural networks
    Chady, Tomasz
    Lopato, Przemyslaw
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) : 1769 - 1772
  • [39] Mineral identification using color spaces and artificial neural networks
    Baykan, Nurdan Akhan
    Yilmaz, Nihat
    [J]. COMPUTERS & GEOSCIENCES, 2010, 36 (01) : 91 - 97
  • [40] PARAMETRIC IDENTIFICATION OF CONTROL SYSTEMS USING ARTIFICIAL NEURAL NETWORKS
    Zakamaldin, Andrey A.
    Andyk, Vladimir S.
    [J]. SMART GRIDS 2015, 2015, 37