Mineral identification using color spaces and artificial neural networks

被引:75
|
作者
Baykan, Nurdan Akhan [1 ]
Yilmaz, Nihat [2 ]
机构
[1] Univ Selcuk, Dept Comp Engn, Konya, Turkey
[2] Univ Selcuk, Dept Elect Elect Engn, Konya, Turkey
关键词
Artificial neural networks; Mineral; Thin section image; RGB; HSV; ROTATING POLARIZER STAGE; IMAGE-ANALYSIS; CLASSIFICATION; MICROSCOPE;
D O I
10.1016/j.cageo.2009.04.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Identification of minerals and percentage of their area within a thin section of rock are important for identifying and naming rocks. Colors of minerals are the basic factors for identification. In this study, an artificial neural network is used for the classification of minerals. Optical data of thin sections is acquired from the rotating polarizing microscope stage. For the first analysis we selected a set of parameters based on red, green. blue (RGB) and the second based on hue, saturation, value (HSV) color spaces are extracted from the segmented minerals within each data set. A neural network with k-fold cross validation is trained with manually classified mineral samples based on their pixel values. The most successful artificial network to date is the three-layer feed forward network which uses minimum square error correction. The network uses 6 distinct input parameters to classify 5 different minerals, namely, quartz, muscovite, biotite, chlorite, and opaque. Testing the network with previously unseen mineral samples yielded successful results as high as 81-98%. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 50 条
  • [1] Intelligent Mineral Identification Using Clustering and Artificial Neural Networks Techniques
    Izadi, Hossein
    Sadri, Javad
    Mehran, Nosrat-Agha
    [J]. 2013 FIRST IRANIAN CONFERENCE ON PATTERN RECOGNITION AND IMAGE ANALYSIS (PRIA), 2013,
  • [2] Mineral identification using artificial neural networks and the rotating polarizer stage
    Thompson, S
    Fueten, F
    Bockus, D
    [J]. COMPUTERS & GEOSCIENCES, 2001, 27 (09) : 1081 - 1089
  • [3] The Importance of Color Spaces for Image Classification Using Artificial Neural Networks: A Review
    Velastegui, Ronny
    Yang, Linna
    Han, Dong
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT II, 2021, 12950 : 70 - 83
  • [4] Nematode Identification using Artificial Neural Networks
    Uhlemann, Jason
    Cawley, Oisin
    Kakouli-Duarte, Thomais
    [J]. PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON DEEP LEARNING THEORY AND APPLICATIONS (DELTA), 2020, : 13 - 22
  • [5] Tissue color images segemntation using artificial neural networks
    Sammouda, M
    Sammouda, R
    Niki, N
    Benaichouche, M
    [J]. 2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 and 2, 2004, : 145 - 148
  • [6] Load identification of the gearbox using artificial neural networks
    Tian, Y
    Zhang, ZB
    [J]. ISTM/2003: 5TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-6, CONFERENCE PROCEEDINGS, 2003, : 1457 - 1460
  • [7] Bridge Damage Identification Using Artificial Neural Networks
    Weinstein, Jordan C.
    Sanayei, Masoud
    Brenner, Brian R.
    [J]. JOURNAL OF BRIDGE ENGINEERING, 2018, 23 (11)
  • [8] Identification of Faults in Microgrid Using Artificial Neural Networks
    Kolla, Sri
    Onwonga, Peter
    [J]. PROCEEDINGS OF THE 2020 IEEE GREEN TECHNOLOGIES CONFERENCE (GREENTECH), 2020, : 115 - 120
  • [9] Particle identification using artificial neural networks at BESⅢ
    秦纲
    吕军光
    何康林
    边渐鸣
    曹国富
    邓子艳
    何苗
    黄彬
    季晓斌
    李刚
    李海波
    李卫东
    刘春秀
    刘怀民
    马秋梅
    马想
    冒亚军
    毛泽普
    莫晓虎
    邱进发
    孙胜森
    孙永昭
    王纪科
    王亮亮
    文硕频
    伍灵慧
    谢宇广
    尤郑昀
    杨明
    俞国威
    苑长征
    袁野
    臧石磊
    张长春
    张建勇
    张令
    张学尧
    张瑶
    朱永生
    邹佳恒
    [J]. Chinese Physics C, 2008, (01) : 1 - 8
  • [10] Tracer model identification using artificial neural networks
    Akin, S
    [J]. WATER RESOURCES RESEARCH, 2005, 41 (10) : W10421 - 1